An Optical physics inspired CNN approach for intrinsic image
decomposition
- URL: http://arxiv.org/abs/2105.10076v1
- Date: Fri, 21 May 2021 00:54:01 GMT
- Title: An Optical physics inspired CNN approach for intrinsic image
decomposition
- Authors: Harshana Weligampola, Gihan Jayatilaka, Suren Sritharan, Parakrama
Ekanayake, Roshan Ragel, Vijitha Herath, Roshan Godaliyadda
- Abstract summary: Intrinsic Image Decomposition is an open problem of generating the constituents of an image.
We propose a neural network architecture capable of this decomposition using physics-based parameters derived from the image.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Intrinsic Image Decomposition is an open problem of generating the
constituents of an image. Generating reflectance and shading from a single
image is a challenging task specifically when there is no ground truth. There
is a lack of unsupervised learning approaches for decomposing an image into
reflectance and shading using a single image. We propose a neural network
architecture capable of this decomposition using physics-based parameters
derived from the image. Through experimental results, we show that (a) the
proposed methodology outperforms the existing deep learning-based IID
techniques and (b) the derived parameters improve the efficacy significantly.
We conclude with a closer analysis of the results (numerical and example
images) showing several avenues for improvement.
Related papers
- Research on Image Super-Resolution Reconstruction Mechanism based on Convolutional Neural Network [8.739451985459638]
Super-resolution algorithms transform one or more sets of low-resolution images captured from the same scene into high-resolution images.
The extraction of image features and nonlinear mapping methods in the reconstruction process remain challenging for existing algorithms.
The objective is to recover high-quality, high-resolution images from low-resolution images.
arXiv Detail & Related papers (2024-07-18T06:50:39Z) - Joint Learning of Deep Texture and High-Frequency Features for
Computer-Generated Image Detection [24.098604827919203]
We propose a joint learning strategy with deep texture and high-frequency features for CG image detection.
A semantic segmentation map is generated to guide the affine transformation operation.
The combination of the original image and the high-frequency components of the original and rendered images are fed into a multi-branch neural network equipped with attention mechanisms.
arXiv Detail & Related papers (2022-09-07T17:30:40Z) - Efficient Textured Mesh Recovery from Multiple Views with Differentiable
Rendering [8.264851594332677]
We propose an efficient coarse-to-fine approach to recover the textured mesh from multi-view images.
We optimize the shape geometry by minimizing the difference between the rendered mesh with the depth predicted by the learning-based multi-view stereo algorithm.
In contrast to the implicit neural representation on shape and color, we introduce a physically based inverse rendering scheme to jointly estimate the lighting and reflectance of the objects.
arXiv Detail & Related papers (2022-05-25T03:33:55Z) - Efficient and Differentiable Shadow Computation for Inverse Problems [64.70468076488419]
Differentiable geometric computation has received increasing interest for image-based inverse problems.
We propose an efficient yet efficient approach for differentiable visibility and soft shadow computation.
As our formulation is differentiable, it can be used to solve inverse problems such as texture, illumination, rigid pose, and deformation recovery from images.
arXiv Detail & Related papers (2021-04-01T09:29:05Z) - Uncalibrated Neural Inverse Rendering for Photometric Stereo of General
Surfaces [103.08512487830669]
This paper presents an uncalibrated deep neural network framework for the photometric stereo problem.
Existing neural network-based methods either require exact light directions or ground-truth surface normals of the object or both.
We propose an uncalibrated neural inverse rendering approach to this problem.
arXiv Detail & Related papers (2020-12-12T10:33:08Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
Recent work has shown that the structure of deep convolutional neural networks can be used as a structured image prior.
We propose to search for neural architectures that capture stronger image priors.
We search for an improved network by leveraging an existing neural architecture search algorithm.
arXiv Detail & Related papers (2020-08-26T17:59:36Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Depth image denoising using nuclear norm and learning graph model [107.51199787840066]
Group-based image restoration methods are more effective in gathering the similarity among patches.
For each patch, we find and group the most similar patches within a searching window.
The proposed method is superior to other current state-of-the-art denoising methods in both subjective and objective criterion.
arXiv Detail & Related papers (2020-08-09T15:12:16Z) - Learning Spatial Relationships between Samples of Patent Image Shapes [14.37369942979269]
We propose a method suitable to binary images which bridges some of the successes of deep learning (DL)
The method consists on extracting the shape of interest from the binary image and applying a non-Euclidean geometric neural-net architecture to learn the local and global spatial relationships of the shape.
arXiv Detail & Related papers (2020-04-12T23:05:19Z) - Multimodal Deep Unfolding for Guided Image Super-Resolution [23.48305854574444]
Deep learning methods rely on training data to learn an end-to-end mapping from a low-resolution input to a high-resolution output.
We propose a multimodal deep learning design that incorporates sparse priors and allows the effective integration of information from another image modality into the network architecture.
Our solution relies on a novel deep unfolding operator, performing steps similar to an iterative algorithm for convolutional sparse coding with side information.
arXiv Detail & Related papers (2020-01-21T14:41:53Z) - Single image reflection removal via learning with multi-image
constraints [50.54095311597466]
We propose a novel learning-based solution that combines the advantages of the aforementioned approaches and overcomes their drawbacks.
Our algorithm works by learning a deep neural network to optimize the target with joint constraints enhanced among multiple input images.
Our algorithm runs in real-time and state-of-the-art reflection removal performance on real images.
arXiv Detail & Related papers (2019-12-08T06:10:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.