An Efficient Application of Neuroevolution for Competitive Multiagent
Learning
- URL: http://arxiv.org/abs/2105.10907v1
- Date: Sun, 23 May 2021 10:34:48 GMT
- Title: An Efficient Application of Neuroevolution for Competitive Multiagent
Learning
- Authors: Unnikrishnan Rajendran Menon and Anirudh Rajiv Menon
- Abstract summary: NEAT is a popular evolutionary strategy used to obtain the best performing neural network architecture.
This paper utilizes the NEAT algorithm to achieve competitive multiagent learning on a modified pong game environment.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiagent systems provide an ideal environment for the evaluation and
analysis of real-world problems using reinforcement learning algorithms. Most
traditional approaches to multiagent learning are affected by long training
periods as well as high computational complexity. NEAT (NeuroEvolution of
Augmenting Topologies) is a popular evolutionary strategy used to obtain the
best performing neural network architecture often used to tackle optimization
problems in the field of artificial intelligence. This paper utilizes the NEAT
algorithm to achieve competitive multiagent learning on a modified pong game
environment in an efficient manner. The competing agents abide by different
rules while having similar observation space parameters. The proposed algorithm
utilizes this property of the environment to define a singular
neuroevolutionary procedure that obtains the optimal policy for all the agents.
The compiled results indicate that the proposed implementation achieves ideal
behaviour in a very short training period when compared to existing multiagent
reinforcement learning models.
Related papers
- Enhancing CNN Classification with Lamarckian Memetic Algorithms and Local Search [0.0]
We propose a novel approach integrating a two-stage training technique with population-based optimization algorithms incorporating local search capabilities.
Our experiments demonstrate that the proposed method outperforms state-of-the-art gradient-based techniques.
arXiv Detail & Related papers (2024-10-26T17:31:15Z) - Meta-Learning Strategies through Value Maximization in Neural Networks [7.285835869818669]
We present a learning effort framework capable of efficiently optimizing control signals on a fully normative objective.
We apply this framework to investigate the effect of approximations in common meta-learning algorithms.
Across settings, we find that control effort is most beneficial when applied to easier aspects of a task early in learning.
arXiv Detail & Related papers (2023-10-30T18:29:26Z) - A Reinforcement Learning-assisted Genetic Programming Algorithm for Team
Formation Problem Considering Person-Job Matching [70.28786574064694]
A reinforcement learning-assisted genetic programming algorithm (RL-GP) is proposed to enhance the quality of solutions.
The hyper-heuristic rules obtained through efficient learning can be utilized as decision-making aids when forming project teams.
arXiv Detail & Related papers (2023-04-08T14:32:12Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Deep Reinforcement Learning for Exact Combinatorial Optimization:
Learning to Branch [13.024115985194932]
We propose a new approach for solving the data labeling and inference issues in optimization based on the use of the reinforcement learning (RL) paradigm.
We use imitation learning to bootstrap an RL agent and then use Proximal Policy (PPO) to further explore global optimal actions.
arXiv Detail & Related papers (2022-06-14T16:35:58Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
This paper presents a critical analysis on the incorporation of algorithms based on neural networks into the classical optimization framework.
A comprehensive study is carried out to analyse the fundamental aspects of such algorithms, including performance, transferability, computational cost and to larger-sized instances.
arXiv Detail & Related papers (2022-05-03T07:54:56Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) learns successful equilibrium policies after a few interactions with the environment.
We demonstrate our approach experimentally on an autonomous driving simulation benchmark.
arXiv Detail & Related papers (2022-03-14T17:24:03Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Behavior-based Neuroevolutionary Training in Reinforcement Learning [3.686320043830301]
This work presents a hybrid algorithm that combines neuroevolutionary optimization with value-based reinforcement learning.
For this purpose, we consolidate different methods to generate and optimize agent policies, creating a diverse population.
Our results indicate that combining methods can enhance the sample efficiency and learning speed for evolutionary approaches.
arXiv Detail & Related papers (2021-05-17T15:40:42Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
Phase retrieval is an important component in modern computational imaging systems.
Recent advances in deep learning have opened up a new possibility for robust and fast PR.
We develop a novel framework for deep unfolding to overcome the existing limitations.
arXiv Detail & Related papers (2021-01-12T08:36:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.