View Distillation with Unlabeled Data for Extracting Adverse Drug
Effects from User-Generated Data
- URL: http://arxiv.org/abs/2105.11354v1
- Date: Mon, 24 May 2021 15:38:08 GMT
- Title: View Distillation with Unlabeled Data for Extracting Adverse Drug
Effects from User-Generated Data
- Authors: Payam Karisani, Jinho D. Choi, Li Xiong
- Abstract summary: We present an algorithm for identifying Adverse Drug Reactions in social media data.
Our model relies on the properties of the problem and the characteristics of contextual word embeddings.
We evaluate our model in the largest publicly available ADR dataset.
- Score: 21.0706831551535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present an algorithm based on multi-layer transformers for identifying
Adverse Drug Reactions (ADR) in social media data. Our model relies on the
properties of the problem and the characteristics of contextual word embeddings
to extract two views from documents. Then a classifier is trained on each view
to label a set of unlabeled documents to be used as an initializer for a new
classifier in the other view. Finally, the initialized classifier in each view
is further trained using the initial training examples. We evaluated our model
in the largest publicly available ADR dataset. The experiments testify that our
model significantly outperforms the transformer-based models pretrained on
domain-specific data.
Related papers
- Benchmarking and Analyzing Generative Data for Visual Recognition [66.55174903469722]
This work delves into the impact of generative images, primarily comparing paradigms that harness external data.
We devise textbfGenBench, a benchmark comprising 22 datasets with 2548 categories, to appraise generative data across various visual recognition tasks.
Our exhaustive benchmark and analysis spotlight generative data's promise in visual recognition, while identifying key challenges for future investigation.
arXiv Detail & Related papers (2023-07-25T17:59:59Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Automatic Pharma News Categorization [0.0]
We use a text dataset consisting of 23 news categories relevant to pharma information science.
We compare the fine-tuning performance of multiple transformer models in a classification task.
We propose an ensemble model consisting of the top performing individual predictors.
arXiv Detail & Related papers (2021-12-28T08:42:16Z) - Multi-Attribute Balanced Sampling for Disentangled GAN Controls [0.0]
Various controls over the generated data can be extracted from the latent space of a pre-trained GAN.
We show that this approach outperforms state-of-the-art classifier-based methods while avoiding the need for disentanglement-enforcing post-processing.
arXiv Detail & Related papers (2021-10-28T08:44:13Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
We propose a simple method to derive 2D representation from detection scores produced by an arbitrary set of binary classifiers.
Based upon rank correlations, our method facilitates a visual comparison of classifiers with arbitrary scores.
While the approach is fully versatile and can be applied to any detection task, we demonstrate the method using scores produced by automatic speaker verification and voice anti-spoofing systems.
arXiv Detail & Related papers (2021-06-11T13:03:33Z) - Self-Trained One-class Classification for Unsupervised Anomaly Detection [56.35424872736276]
Anomaly detection (AD) has various applications across domains, from manufacturing to healthcare.
In this work, we focus on unsupervised AD problems whose entire training data are unlabeled and may contain both normal and anomalous samples.
To tackle this problem, we build a robust one-class classification framework via data refinement.
We show that our method outperforms state-of-the-art one-class classification method by 6.3 AUC and 12.5 average precision.
arXiv Detail & Related papers (2021-06-11T01:36:08Z) - Single versus Multiple Annotation for Named Entity Recognition of
Mutations [4.213427823201119]
We address the impact of using a single annotator vs two annotators, in order to measure whether multiple annotators are required.
Once we evaluate the performance loss when using a single annotator, we apply different methods to sample the training data for second annotation.
We use held-out double-annotated data to build two scenarios with different types of rankings: similarity-based and confidence based.
We evaluate both approaches on: (i) their ability to identify training instances that are erroneous, and (ii) on Mutation NER performance for state-of-the-art
arXiv Detail & Related papers (2021-01-19T03:54:17Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
We investigate three schemes to improve the model generalization ability for few-shot settings.
We perform empirical comparisons on 10 public NER datasets with various proportions of labeled data.
We create new state-of-the-art results on both few-shot and training-free settings.
arXiv Detail & Related papers (2020-12-29T23:43:16Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.