A Survey on Complex Knowledge Base Question Answering: Methods,
Challenges and Solutions
- URL: http://arxiv.org/abs/2105.11644v1
- Date: Tue, 25 May 2021 03:45:30 GMT
- Title: A Survey on Complex Knowledge Base Question Answering: Methods,
Challenges and Solutions
- Authors: Yunshi Lan, Gaole He, Jinhao Jiang, Jing Jiang, Wayne Xin Zhao and
Ji-Rong Wen
- Abstract summary: Knowledge base question answering (KBQA) aims to answer a question over a knowledge base (KB)
We elaborately summarize the typical challenges and solutions for complex KBQA.
- Score: 41.680033017518376
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge base question answering (KBQA) aims to answer a question over a
knowledge base (KB). Recently, a large number of studies focus on semantically
or syntactically complicated questions. In this paper, we elaborately summarize
the typical challenges and solutions for complex KBQA. We begin with
introducing the background about the KBQA task. Next, we present the two
mainstream categories of methods for complex KBQA, namely semantic
parsing-based (SP-based) methods and information retrieval-based (IR-based)
methods. We then review the advanced methods comprehensively from the
perspective of the two categories. Specifically, we explicate their solutions
to the typical challenges. Finally, we conclude and discuss some promising
directions for future research.
Related papers
- ChatKBQA: A Generate-then-Retrieve Framework for Knowledge Base Question Answering with Fine-tuned Large Language Models [19.85526116658481]
We introduce ChatKBQA, a novel and simple generate-then-retrieve KBQA framework.
Experimental results show that ChatKBQA achieves new state-of-the-art performance on standard KBQA datasets.
This work can also be regarded as a new paradigm for combining LLMs with knowledge graphs for interpretable and knowledge-required question answering.
arXiv Detail & Related papers (2023-10-13T09:45:14Z) - Knowledge Base Question Answering: A Semantic Parsing Perspective [15.1388686976988]
Research on question answering over knowledge bases (KBQA) has comparatively been progressing slowly.
We identify and attribute this to two unique challenges of KBQA, schema-level complexity and fact-level complexity.
We argue that we can still take much inspiration from the literature of semantic parsing.
arXiv Detail & Related papers (2022-09-12T02:56:29Z) - QA Is the New KR: Question-Answer Pairs as Knowledge Bases [105.692569000534]
We argue that the proposed type of KB has many of the key advantages of a traditional symbolic KB.
Unlike a traditional KB, this information store is well-aligned with common user information needs.
arXiv Detail & Related papers (2022-07-01T19:09:08Z) - Modern Question Answering Datasets and Benchmarks: A Survey [5.026863544662493]
Question Answering (QA) is one of the most important natural language processing (NLP) tasks.
It aims using NLP technologies to generate a corresponding answer to a given question based on the massive unstructured corpus.
In this paper, we investigate influential QA datasets that have been released in the era of deep learning.
arXiv Detail & Related papers (2022-06-30T05:53:56Z) - A Benchmark for Generalizable and Interpretable Temporal Question
Answering over Knowledge Bases [67.33560134350427]
TempQA-WD is a benchmark dataset for temporal reasoning.
It is based on Wikidata, which is the most frequently curated, openly available knowledge base.
arXiv Detail & Related papers (2022-01-15T08:49:09Z) - SYGMA: System for Generalizable Modular Question Answering OverKnowledge
Bases [57.89642289610301]
We present SYGMA, a modular approach facilitating general-izability across multiple knowledge bases and multiple rea-soning types.
We demonstrate effectiveness of our system by evaluating on datasets belonging to two distinct knowledge bases,DBpedia and Wikidata.
arXiv Detail & Related papers (2021-09-28T01:57:56Z) - Complex Knowledge Base Question Answering: A Survey [41.680033017518376]
Knowledge base question answering (KBQA) aims to answer a question over a knowledge base (KB)
In recent years, researchers propose a large number of novel methods, which looked into the challenges of answering complex questions.
We present two mainstream categories of methods for complex KBQA, namely semantic parsing-based (SP-based) methods and information retrieval-based (IR-based) methods.
arXiv Detail & Related papers (2021-08-15T08:14:54Z) - A Survey on Complex Question Answering over Knowledge Base: Recent
Advances and Challenges [71.4531144086568]
Question Answering (QA) over Knowledge Base (KB) aims to automatically answer natural language questions.
Researchers have shifted their attention from simple questions to complex questions, which require more KB triples and constraint inference.
arXiv Detail & Related papers (2020-07-26T07:13:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.