Towards Compact Single Image Super-Resolution via Contrastive
Self-distillation
- URL: http://arxiv.org/abs/2105.11683v1
- Date: Tue, 25 May 2021 05:44:11 GMT
- Title: Towards Compact Single Image Super-Resolution via Contrastive
Self-distillation
- Authors: Yanbo Wang, Shaohui Lin, Yanyun Qu, Haiyan Wu, Zhizhong Zhang, Yuan
Xie, Angela Yao
- Abstract summary: Convolutional neural networks (CNNs) are highly successful for super-resolution (SR)
We propose a novel contrastive self-distillation (CSD) framework to simultaneously compress and accelerate various off-the-shelf SR models.
In particular, a channel-splitting super-resolution network can first be constructed from a target teacher network as a compact student network.
- Score: 47.72815893585127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional neural networks (CNNs) are highly successful for
super-resolution (SR) but often require sophisticated architectures with heavy
memory cost and computational overhead, significantly restricts their practical
deployments on resource-limited devices. In this paper, we proposed a novel
contrastive self-distillation (CSD) framework to simultaneously compress and
accelerate various off-the-shelf SR models. In particular, a channel-splitting
super-resolution network can first be constructed from a target teacher network
as a compact student network. Then, we propose a novel contrastive loss to
improve the quality of SR images and PSNR/SSIM via explicit knowledge transfer.
Extensive experiments demonstrate that the proposed CSD scheme effectively
compresses and accelerates several standard SR models such as EDSR, RCAN and
CARN. Code is available at https://github.com/Booooooooooo/CSD.
Related papers
- Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - The Best of Both Worlds: a Framework for Combining Degradation
Prediction with High Performance Super-Resolution Networks [14.804000317612305]
We present a framework for combining blind SR prediction mechanism with any deep SR network.
We show that our hybrid models consistently achieve stronger SR performance than both their non-blind and blind counterparts.
arXiv Detail & Related papers (2022-11-09T16:49:35Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
This paper explores a novel frequency-aware dynamic network for dividing the input into multiple parts according to its coefficients in the discrete cosine transform (DCT) domain.
In practice, the high-frequency part will be processed using expensive operations and the lower-frequency part is assigned with cheap operations to relieve the computation burden.
Experiments conducted on benchmark SISR models and datasets show that the frequency-aware dynamic network can be employed for various SISR neural architectures.
arXiv Detail & Related papers (2021-03-15T12:54:26Z) - MPRNet: Multi-Path Residual Network for Lightweight Image Super
Resolution [2.3576437999036473]
A novel lightweight super resolution network is proposed, which improves the SOTA performance in lightweight SR.
The proposed architecture also contains a new attention mechanism, Two-Fold Attention Module, to maximize the representation ability of the model.
arXiv Detail & Related papers (2020-11-09T17:11:15Z) - Accurate and Lightweight Image Super-Resolution with Model-Guided Deep
Unfolding Network [63.69237156340457]
We present and advocate an explainable approach toward SISR named model-guided deep unfolding network (MoG-DUN)
MoG-DUN is accurate (producing fewer aliasing artifacts), computationally efficient (with reduced model parameters), and versatile (capable of handling multiple degradations)
The superiority of the proposed MoG-DUN method to existing state-of-theart image methods including RCAN, SRDNF, and SRFBN is substantiated by extensive experiments on several popular datasets and various degradation scenarios.
arXiv Detail & Related papers (2020-09-14T08:23:37Z) - OverNet: Lightweight Multi-Scale Super-Resolution with Overscaling
Network [3.6683231417848283]
We introduce OverNet, a deep but lightweight convolutional network to solve SISR at arbitrary scale factors with a single model.
We show that our network outperforms previous state-of-the-art results in standard benchmarks while using fewer parameters than previous approaches.
arXiv Detail & Related papers (2020-08-05T22:10:29Z) - Lightweight image super-resolution with enhanced CNN [82.36883027158308]
Deep convolutional neural networks (CNNs) with strong expressive ability have achieved impressive performances on single image super-resolution (SISR)
We propose a lightweight enhanced SR CNN (LESRCNN) with three successive sub-blocks, an information extraction and enhancement block (IEEB), a reconstruction block (RB) and an information refinement block (IRB)
IEEB extracts hierarchical low-resolution (LR) features and aggregates the obtained features step-by-step to increase the memory ability of the shallow layers on deep layers for SISR.
RB converts low-frequency features into high-frequency features by fusing global
arXiv Detail & Related papers (2020-07-08T18:03:40Z) - Deep Adaptive Inference Networks for Single Image Super-Resolution [72.7304455761067]
Single image super-resolution (SISR) has witnessed tremendous progress in recent years owing to the deployment of deep convolutional neural networks (CNNs)
In this paper, we take a step forward to address this issue by leveraging the adaptive inference networks for deep SISR (AdaDSR)
Our AdaDSR involves an SISR model as backbone and a lightweight adapter module which takes image features and resource constraint as input and predicts a map of local network depth.
arXiv Detail & Related papers (2020-04-08T10:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.