Transfer Learning and Curriculum Learning in Sokoban
- URL: http://arxiv.org/abs/2105.11702v1
- Date: Tue, 25 May 2021 07:01:32 GMT
- Title: Transfer Learning and Curriculum Learning in Sokoban
- Authors: Zhao Yang, Mike Preuss, Aske Plaat
- Abstract summary: We show how prior knowledge improves learning in Sokoban tasks.
In effect, we show how curriculum learning, from simple to complex tasks, works in Sokoban.
- Score: 5.563631490799427
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Transfer learning can speed up training in machine learning and is regularly
used in classification tasks. It reuses prior knowledge from other tasks to
pre-train networks for new tasks. In reinforcement learning, learning actions
for a behavior policy that can be applied to new environments is still a
challenge, especially for tasks that involve much planning. Sokoban is a
challenging puzzle game. It has been used widely as a benchmark in
planning-based reinforcement learning. In this paper, we show how prior
knowledge improves learning in Sokoban tasks. We find that reusing feature
representations learned previously can accelerate learning new, more complex,
instances. In effect, we show how curriculum learning, from simple to complex
tasks, works in Sokoban. Furthermore, feature representations learned in
simpler instances are more general, and thus lead to positive transfers towards
more complex tasks, but not vice versa. We have also studied which part of the
knowledge is most important for transfer to succeed, and identify which layers
should be used for pre-training.
Related papers
- Beyond Not-Forgetting: Continual Learning with Backward Knowledge
Transfer [39.99577526417276]
In continual learning (CL) an agent can improve the learning performance of both a new task and old' tasks.
Most existing CL methods focus on addressing catastrophic forgetting in neural networks by minimizing the modification of the learnt model for old tasks.
We propose a new CL method with Backward knowlEdge tRansfer (CUBER) for a fixed capacity neural network without data replay.
arXiv Detail & Related papers (2022-11-01T23:55:51Z) - Teacher-student curriculum learning for reinforcement learning [1.7259824817932292]
Reinforcement learning (rl) is a popular paradigm for sequential decision making problems.
The sample inefficiency of deep reinforcement learning methods is a significant obstacle when applying rl to real-world problems.
We propose a teacher-student curriculum learning setting where we simultaneously train a teacher that selects tasks for the student while the student learns how to solve the selected task.
arXiv Detail & Related papers (2022-10-31T14:45:39Z) - Transferability in Deep Learning: A Survey [80.67296873915176]
The ability to acquire and reuse knowledge is known as transferability in deep learning.
We present this survey to connect different isolated areas in deep learning with their relation to transferability.
We implement a benchmark and an open-source library, enabling a fair evaluation of deep learning methods in terms of transferability.
arXiv Detail & Related papers (2022-01-15T15:03:17Z) - Relational Experience Replay: Continual Learning by Adaptively Tuning
Task-wise Relationship [54.73817402934303]
We propose Experience Continual Replay (ERR), a bi-level learning framework to adaptively tune task-wise to achieve a better stability plasticity' tradeoff.
ERR can consistently improve the performance of all baselines and surpass current state-of-the-art methods.
arXiv Detail & Related papers (2021-12-31T12:05:22Z) - Hierarchical Skills for Efficient Exploration [70.62309286348057]
In reinforcement learning, pre-trained low-level skills have the potential to greatly facilitate exploration.
Prior knowledge of the downstream task is required to strike the right balance between generality (fine-grained control) and specificity (faster learning) in skill design.
We propose a hierarchical skill learning framework that acquires skills of varying complexity in an unsupervised manner.
arXiv Detail & Related papers (2021-10-20T22:29:32Z) - Latent Skill Planning for Exploration and Transfer [49.25525932162891]
In this paper, we investigate how these two approaches can be integrated into a single reinforcement learning agent.
We leverage the idea of partial amortization for fast adaptation at test time.
We demonstrate the benefits of our design decisions across a suite of challenging locomotion tasks.
arXiv Detail & Related papers (2020-11-27T18:40:03Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z) - Importance Weighted Policy Learning and Adaptation [89.46467771037054]
We study a complementary approach which is conceptually simple, general, modular and built on top of recent improvements in off-policy learning.
The framework is inspired by ideas from the probabilistic inference literature and combines robust off-policy learning with a behavior prior.
Our approach achieves competitive adaptation performance on hold-out tasks compared to meta reinforcement learning baselines and can scale to complex sparse-reward scenarios.
arXiv Detail & Related papers (2020-09-10T14:16:58Z) - Curriculum Learning with Hindsight Experience Replay for Sequential
Object Manipulation Tasks [1.370633147306388]
We present an algorithm that combines curriculum learning with Hindsight Experience Replay (HER) to learn sequential object manipulation tasks.
The algorithm exploits the recurrent structure inherent in many object manipulation tasks and implements the entire learning process in the original simulation without adjusting it to each source task.
arXiv Detail & Related papers (2020-08-21T08:59:28Z) - Learning Transferable Concepts in Deep Reinforcement Learning [0.7161783472741748]
We show that learning discrete representations of sensory inputs can provide a high-level abstraction that is common across multiple tasks.
In particular, we show that it is possible to learn such representations by self-supervision, following an information theoretic approach.
Our method is able to learn concepts in locomotive and optimal control tasks that increase the sample efficiency in both known and unknown tasks.
arXiv Detail & Related papers (2020-05-16T04:45:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.