Extending rational models of communication from beliefs to actions
- URL: http://arxiv.org/abs/2105.11950v1
- Date: Tue, 25 May 2021 13:58:01 GMT
- Title: Extending rational models of communication from beliefs to actions
- Authors: Theodore R. Sumers, Robert D. Hawkins, Mark K. Ho, Thomas L. Griffiths
- Abstract summary: Speakers communicate to influence their partner's beliefs and shape their actions.
We develop three speaker models: a belief-oriented speaker with a purely informative objective; an action-oriented speaker with an instrumental objective; and a combined speaker which integrates the two.
We show that grounding production choices in future listener actions results in relevance effects and flexible uses of nonliteral language.
- Score: 10.169856458866088
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speakers communicate to influence their partner's beliefs and shape their
actions. Belief- and action-based objectives have been explored independently
in recent computational models, but it has been challenging to explicitly
compare or integrate them. Indeed, we find that they are conflated in standard
referential communication tasks. To distinguish these accounts, we introduce a
new paradigm called signaling bandits, generalizing classic Lewis signaling
games to a multi-armed bandit setting where all targets in the context have
some relative value. We develop three speaker models: a belief-oriented speaker
with a purely informative objective; an action-oriented speaker with an
instrumental objective; and a combined speaker which integrates the two by
inducing listener beliefs that generally lead to desirable actions. We then
present a series of simulations demonstrating that grounding production choices
in future listener actions results in relevance effects and flexible uses of
nonliteral language. More broadly, our findings suggest that language games
based on richer decision problems are a promising avenue for insight into
rational communication.
Related papers
- Dyadic Interaction Modeling for Social Behavior Generation [6.626277726145613]
We present an effective framework for creating 3D facial motions in dyadic interactions.
The heart of our framework is Dyadic Interaction Modeling (DIM), a pre-training approach.
Experiments demonstrate the superiority of our framework in generating listener motions.
arXiv Detail & Related papers (2024-03-14T03:21:33Z) - Integrating Self-supervised Speech Model with Pseudo Word-level Targets
from Visually-grounded Speech Model [57.78191634042409]
We propose Pseudo-Word HuBERT (PW-HuBERT), a framework that integrates pseudo word-level targets into the training process.
Our experimental results on four spoken language understanding (SLU) benchmarks suggest the superiority of our model in capturing semantic information.
arXiv Detail & Related papers (2024-02-08T16:55:21Z) - MindDial: Belief Dynamics Tracking with Theory-of-Mind Modeling for Situated Neural Dialogue Generation [62.44907105496227]
MindDial is a novel conversational framework that can generate situated free-form responses with theory-of-mind modeling.
We introduce an explicit mind module that can track the speaker's belief and the speaker's prediction of the listener's belief.
Our framework is applied to both prompting and fine-tuning-based models, and is evaluated across scenarios involving both common ground alignment and negotiation.
arXiv Detail & Related papers (2023-06-27T07:24:32Z) - Speaking the Language of Your Listener: Audience-Aware Adaptation via
Plug-and-Play Theory of Mind [4.052000839878213]
We model a visually grounded referential game between a knowledgeable speaker and a listener with more limited visual and linguistic experience.
We endow our speaker with the ability to adapt its referring expressions via a simulation module that monitors the effectiveness of planned utterances from the listener's perspective.
arXiv Detail & Related papers (2023-05-31T15:17:28Z) - Know your audience: specializing grounded language models with listener
subtraction [20.857795779760917]
We take inspiration from Dixit to formulate a multi-agent image reference game.
We show that finetuning an attention-based adapter between a CLIP vision encoder and a large language model in this contrastive, multi-agent setting gives rise to context-dependent natural language specialization.
arXiv Detail & Related papers (2022-06-16T17:52:08Z) - Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion [89.01668641930206]
We present a framework for modeling interactional communication in dyadic conversations.
We autoregressively output multiple possibilities of corresponding listener motion.
Our method organically captures the multimodal and non-deterministic nature of nonverbal dyadic interactions.
arXiv Detail & Related papers (2022-04-18T17:58:04Z) - Few-shot Language Coordination by Modeling Theory of Mind [95.54446989205117]
We study the task of few-shot $textitlanguage coordination$.
We require the lead agent to coordinate with a $textitpopulation$ of agents with different linguistic abilities.
This requires the ability to model the partner's beliefs, a vital component of human communication.
arXiv Detail & Related papers (2021-07-12T19:26:11Z) - Filling the Gap of Utterance-aware and Speaker-aware Representation for
Multi-turn Dialogue [76.88174667929665]
A multi-turn dialogue is composed of multiple utterances from two or more different speaker roles.
In the existing retrieval-based multi-turn dialogue modeling, the pre-trained language models (PrLMs) as encoder represent the dialogues coarsely.
We propose a novel model to fill such a gap by modeling the effective utterance-aware and speaker-aware representations entailed in a dialogue history.
arXiv Detail & Related papers (2020-09-14T15:07:19Z) - Incorporating Pragmatic Reasoning Communication into Emergent Language [38.134221799334426]
We study the dynamics of linguistic communication along substantially different intelligence and intelligence levels.
We propose computational models that combine short-term mutual reasoning-based pragmatics with long-term language emergentism.
Our results shed light on their importance for making inroads towards getting more natural, accurate, robust, fine-grained, and succinct utterances.
arXiv Detail & Related papers (2020-06-07T10:31:06Z) - I love your chain mail! Making knights smile in a fantasy game world:
Open-domain goal-oriented dialogue agents [69.68400056148336]
We train a goal-oriented model with reinforcement learning against an imitation-learned chit-chat'' model.
We show that both models outperform an inverse model baseline and can converse naturally with their dialogue partner in order to achieve goals.
arXiv Detail & Related papers (2020-02-07T16:22:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.