Taxonomy of academic plagiarism methods
- URL: http://arxiv.org/abs/2105.12068v1
- Date: Tue, 25 May 2021 16:49:08 GMT
- Title: Taxonomy of academic plagiarism methods
- Authors: Tedo Vrbanec and Ana Mestrovic
- Abstract summary: The article defines plagiarism, explains the origin of the term, as well as plagiarism related terms.
It identifies the extent of the plagiarism domain and then focuses on the plagiarism subdomain of text documents, for which it gives an overview of current classifications.
The article suggests the new classification of academic plagiarism, describes sorts and methods of plagiarism, types and categories, approaches and phases of plagiarism detection, the classification of methods and algorithms for plagiarism detection.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The article gives an overview of the plagiarism domain, with focus on
academic plagiarism. The article defines plagiarism, explains the origin of the
term, as well as plagiarism related terms. It identifies the extent of the
plagiarism domain and then focuses on the plagiarism subdomain of text
documents, for which it gives an overview of current classifications and
taxonomies and then proposes a more comprehensive classification according to
several criteria: their origin and purpose, technical implementation,
consequence, complexity of detection and according to the number of linguistic
sources. The article suggests the new classification of academic plagiarism,
describes sorts and methods of plagiarism, types and categories, approaches and
phases of plagiarism detection, the classification of methods and algorithms
for plagiarism detection. The title of the article explicitly targets the
academic community, but it is sufficiently general and interdisciplinary, so it
can be useful for many other professionals like software developers, linguists
and librarians.
Related papers
- Taxonomy-guided Semantic Indexing for Academic Paper Search [51.07749719327668]
TaxoIndex is a semantic index framework for academic paper search.
It organizes key concepts from papers as a semantic index guided by an academic taxonomy.
It can be flexibly employed to enhance existing dense retrievers.
arXiv Detail & Related papers (2024-10-25T00:00:17Z) - Domain Embeddings for Generating Complex Descriptions of Concepts in
Italian Language [65.268245109828]
We propose a Distributional Semantic resource enriched with linguistic and lexical information extracted from electronic dictionaries.
The resource comprises 21 domain-specific matrices, one comprehensive matrix, and a Graphical User Interface.
Our model facilitates the generation of reasoned semantic descriptions of concepts by selecting matrices directly associated with concrete conceptual knowledge.
arXiv Detail & Related papers (2024-02-26T15:04:35Z) - CausalCite: A Causal Formulation of Paper Citations [80.82622421055734]
CausalCite is a new way to measure the significance of a paper by assessing the causal impact of the paper on its follow-up papers.
It is based on a novel causal inference method, TextMatch, which adapts the traditional matching framework to high-dimensional text embeddings.
We demonstrate the effectiveness of CausalCite on various criteria, such as high correlation with paper impact as reported by scientific experts.
arXiv Detail & Related papers (2023-11-05T23:09:39Z) - Text Similarity from Image Contents using Statistical and Semantic
Analysis Techniques [0.0]
Image Content Plagiarism Detection (ICPD) has gained importance, utilizing advanced image content processing to identify instances of plagiarism.
In this paper, the system has been implemented to detect plagiarism form contents of Images such as Figures, Graphs, Tables etc.
Along with statistical algorithms such as Jaccard and Cosine, introducing semantic algorithms such as LSA, BERT, WordNet outperformed in detecting efficient and accurate plagiarism.
arXiv Detail & Related papers (2023-08-24T15:06:04Z) - TaxoCom: Topic Taxonomy Completion with Hierarchical Discovery of Novel
Topic Clusters [57.59286394188025]
We propose a novel framework for topic taxonomy completion, named TaxoCom.
TaxoCom discovers novel sub-topic clusters of terms and documents.
Our comprehensive experiments on two real-world datasets demonstrate that TaxoCom not only generates the high-quality topic taxonomy in terms of term coherency and topic coverage.
arXiv Detail & Related papers (2022-01-18T07:07:38Z) - A Survey of Plagiarism Detection Systems: Case of Use with English,
French and Arabic Languages [0.0]
This paper presents an overview of plagiarism detection systems for use in Arabic, French, and English academic and educational settings.
An indepth examination of technical forms of plagiarism was also performed in the context of this study.
arXiv Detail & Related papers (2022-01-10T16:11:54Z) - Hamtajoo: A Persian Plagiarism Checker for Academic Manuscripts [0.0]
Hamtajoo is a Persian plagiarism detection system for academic manuscripts.
We describe the overall structure of the system along with the algorithms used in each stage.
In order to evaluate the performance of the proposed system, we used a plagiarism detection corpus comply with the PAN standards.
arXiv Detail & Related papers (2021-12-27T15:45:35Z) - Towards generating citation sentences for multiple references with
intent control [86.53829532976303]
We build a novel generation model with the Fusion-in-Decoder approach to cope with multiple long inputs.
Experiments demonstrate that the proposed approaches provide much more comprehensive features for generating citation sentences.
arXiv Detail & Related papers (2021-12-02T15:32:24Z) - Analyzing Non-Textual Content Elements to Detect Academic Plagiarism [0.8490310884703459]
The thesis proposes plagiarism detection approaches that implement a different concept: analyzing non-textual content in academic documents.
To demonstrate the benefit of combining non-textual and text-based detection methods, the thesis describes the first plagiarism detection system that integrates the analysis of citation-based, image-based, math-based, and text-based document similarity.
arXiv Detail & Related papers (2021-06-10T14:11:52Z) - The Struggle with Academic Plagiarism: Approaches based on Semantic
Similarity [0.0]
We present a report of how semantic similarity measures can be used in the plagiarism detection task.
Current software has proven to be successful, however the problem of identifying paraphrasing or obfuscation plagiarism remains unresolved.
arXiv Detail & Related papers (2021-06-02T20:00:33Z) - Pairwise Learning for Name Disambiguation in Large-Scale Heterogeneous
Academic Networks [81.00481125272098]
We introduce Multi-view Attention-based Pairwise Recurrent Neural Network (MA-PairRNN) to solve the name disambiguation problem.
MA-PairRNN combines heterogeneous graph embedding learning and pairwise similarity learning into a framework.
Results on two real-world datasets demonstrate that our framework has a significant and consistent improvement of performance on the name disambiguation task.
arXiv Detail & Related papers (2020-08-30T06:08:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.