Entropy and complexity unveil the landscape of memes evolution
- URL: http://arxiv.org/abs/2105.12376v1
- Date: Wed, 26 May 2021 07:41:09 GMT
- Title: Entropy and complexity unveil the landscape of memes evolution
- Authors: Carlo Michele Valensise, Alessandra Serra, Alessandro Galeazzi,
Gabriele Etta, Matteo Cinelli, Walter Quattrociocchi
- Abstract summary: We study the evolution of 2 million visual memes from Reddit over ten years, from 2011 to 2020.
We find support for the hypothesis that memes are part of an emerging form of internet metalanguage.
- Score: 105.59074436693487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: On the Internet, information circulates fast and widely, and the form of
content adapts to comply with users' cognitive abilities. Memes are an emerging
aspect of the internet system of signification, and their visual schemes evolve
by adapting to a heterogeneous context. A fundamental question is whether they
present culturally and temporally transcendent characteristics in their
organizing principles. In this work, we study the evolution of 2 million visual
memes from Reddit over ten years, from 2011 to 2020, in terms of their
statistical complexity and entropy. We find support for the hypothesis that
memes are part of an emerging form of internet metalanguage: on one side, we
observe an exponential growth with a doubling time of approximately 6 months;
on the other side, the complexity of memes contents increases, allowing and
adapting to represent social trends and attitudes.
Related papers
- Evolver: Chain-of-Evolution Prompting to Boost Large Multimodal Models for Hateful Meme Detection [49.122777764853055]
We explore the potential of Large Multimodal Models (LMMs) for hateful meme detection.
We propose Evolver, which incorporates LMMs via Chain-of-Evolution (CoE) Prompting.
Evolver simulates the evolving and expressing process of memes and reasons through LMMs in a step-by-step manner.
arXiv Detail & Related papers (2024-07-30T17:51:44Z) - XMeCap: Meme Caption Generation with Sub-Image Adaptability [53.2509590113364]
Humor, deeply rooted in societal meanings and cultural details, poses a unique challenge for machines.
We introduce the textscXMeCap framework, which adopts supervised fine-tuning and reinforcement learning.
textscXMeCap achieves an average evaluation score of 75.85 for single-image memes and 66.32 for multi-image memes, outperforming the best baseline by 3.71% and 4.82%, respectively.
arXiv Detail & Related papers (2024-07-24T10:51:46Z) - Meme-ingful Analysis: Enhanced Understanding of Cyberbullying in Memes
Through Multimodal Explanations [48.82168723932981]
We introduce em MultiBully-Ex, the first benchmark dataset for multimodal explanation from code-mixed cyberbullying memes.
A Contrastive Language-Image Pretraining (CLIP) approach has been proposed for visual and textual explanation of a meme.
arXiv Detail & Related papers (2024-01-18T11:24:30Z) - Contextualizing Internet Memes Across Social Media Platforms [8.22187358555391]
We investigate whether internet memes can be contextualized by using a semantic repository of knowledge, namely, a knowledge graph.
We collect thousands of potential internet meme posts from two social media platforms, namely Reddit and Discord, and develop an extract-transform-load procedure to create a data lake with candidate meme posts.
By using vision transformer-based similarity, we match these candidates against the memes cataloged in IMKG -- a recently released knowledge graph of internet memes.
arXiv Detail & Related papers (2023-11-18T20:18:18Z) - Detecting and Understanding Harmful Memes: A Survey [48.135415967633676]
We offer a comprehensive survey with a focus on harmful memes.
One interesting finding is that many types of harmful memes are not really studied, e.g., such featuring self-harm and extremism.
Another observation is that memes can propagate globally through repackaging in different languages and that they can also be multilingual.
arXiv Detail & Related papers (2022-05-09T13:43:27Z) - Feels Bad Man: Dissecting Automated Hateful Meme Detection Through the
Lens of Facebook's Challenge [10.775419935941008]
We assess the efficacy of current state-of-the-art multimodal machine learning models toward hateful meme detection.
We use two benchmark datasets comprising 12,140 and 10,567 images from 4chan's "Politically Incorrect" board (/pol/) and Facebook's Hateful Memes Challenge dataset.
We conduct three experiments to determine the importance of multimodality on classification performance, the influential capacity of fringe Web communities on mainstream social platforms and vice versa.
arXiv Detail & Related papers (2022-02-17T07:52:22Z) - Multi-modal application: Image Memes Generation [13.043370069398916]
We propose an end-to-end encoder-decoder architecture meme generator.
An Internet meme commonly takes the form of an image and is created by combining a meme template (image) and a caption (natural language sentence)
arXiv Detail & Related papers (2021-12-03T00:17:44Z) - Memes in the Wild: Assessing the Generalizability of the Hateful Memes
Challenge Dataset [47.65948529524281]
We collect hateful and non-hateful memes from Pinterest to evaluate out-of-sample performance on models pre-trained on the Facebook dataset.
We find that memes in the wild differ in two key aspects: 1) Captions must be extracted via OCR, and 2) Memes are more diverse than traditional memes', including screenshots of conversations or text on a plain background.
arXiv Detail & Related papers (2021-07-09T09:04:05Z) - Automatic Discovery of Political Meme Genres with Diverse Appearances [7.3228874258537875]
We introduce a scalable automated visual recognition pipeline for discovering political meme genres of diverse appearance.
This pipeline can ingest meme images from a social network, apply computer vision-based techniques to extract local features, and then organize the memes into related genres.
Results show that this approach can discover new meme genres with visually diverse images that share common stylistic elements.
arXiv Detail & Related papers (2020-01-17T00:45:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.