Pattern Detection in the Activation Space for Identifying Synthesized
Content
- URL: http://arxiv.org/abs/2105.12479v2
- Date: Thu, 27 May 2021 08:40:27 GMT
- Title: Pattern Detection in the Activation Space for Identifying Synthesized
Content
- Authors: Celia Cintas, Skyler Speakman, Girmaw Abebe Tadesse, Victor Akinwande,
Edward McFowland III, Komminist Weldemariam
- Abstract summary: Generative Adversarial Networks (GANs) have recently achieved unprecedented success in photo-realistic image synthesis from low-dimensional random noise.
The ability to synthesize high-quality content at a large scale brings potential risks as the generated samples may lead to misinformation that can create severe social, political, health, and business hazards.
We propose SubsetGAN to identify generated content by detecting a subset of anomalous node-activations in the inner layers of pre-trained neural networks.
- Score: 8.365235325634876
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative Adversarial Networks (GANs) have recently achieved unprecedented
success in photo-realistic image synthesis from low-dimensional random noise.
The ability to synthesize high-quality content at a large scale brings
potential risks as the generated samples may lead to misinformation that can
create severe social, political, health, and business hazards. We propose
SubsetGAN to identify generated content by detecting a subset of anomalous
node-activations in the inner layers of pre-trained neural networks. These
nodes, as a group, maximize a non-parametric measure of divergence away from
the expected distribution of activations created from real data. This enable us
to identify synthesised images without prior knowledge of their distribution.
SubsetGAN efficiently scores subsets of nodes and returns the group of nodes
within the pre-trained classifier that contributed to the maximum score. The
classifier can be a general fake classifier trained over samples from multiple
sources or the discriminator network from different GANs. Our approach shows
consistently higher detection power than existing detection methods across
several state-of-the-art GANs (PGGAN, StarGAN, and CycleGAN) and over different
proportions of generated content.
Related papers
- Rethinking the Up-Sampling Operations in CNN-based Generative Network
for Generalizable Deepfake Detection [86.97062579515833]
We introduce the concept of Neighboring Pixel Relationships(NPR) as a means to capture and characterize the generalized structural artifacts stemming from up-sampling operations.
A comprehensive analysis is conducted on an open-world dataset, comprising samples generated by tft28 distinct generative models.
This analysis culminates in the establishment of a novel state-of-the-art performance, showcasing a remarkable tft11.6% improvement over existing methods.
arXiv Detail & Related papers (2023-12-16T14:27:06Z) - GAN Based Boundary Aware Classifier for Detecting Out-of-distribution
Samples [24.572516991009323]
We propose a GAN based boundary aware classifier (GBAC) for generating a closed hyperspace which only contains most id data.
Our method is based on the fact that the traditional neural net seperates the feature space as several unclosed regions which are not suitable for ood detection.
With GBAC as an auxiliary module, the ood data distributed outside the closed hyperspace will be assigned with much lower score, allowing more effective ood detection.
arXiv Detail & Related papers (2021-12-22T03:35:54Z) - A Method for Evaluating Deep Generative Models of Images via Assessing
the Reproduction of High-order Spatial Context [9.00018232117916]
Generative adversarial networks (GANs) are one kind of DGM which are widely employed.
In this work, we demonstrate several objective tests of images output by two popular GAN architectures.
We designed several context models (SCMs) of distinct image features that can be recovered after generation by a trained GAN.
arXiv Detail & Related papers (2021-11-24T15:58:10Z) - Label Geometry Aware Discriminator for Conditional Generative Networks [40.89719383597279]
Conditional Generative Adversarial Networks (GANs) can generate highly photo realistic images with desired target classes.
These synthetic images have not always been helpful to improve downstream supervised tasks such as image classification.
arXiv Detail & Related papers (2021-05-12T08:17:25Z) - Towards Discovery and Attribution of Open-world GAN Generated Images [18.10496076534083]
We present an iterative algorithm for discovering images generated from previously unseen GANs.
Our algorithm consists of multiple components including network training, out-of-distribution detection, clustering, merge and refine steps.
Our experiments demonstrate the effectiveness of our approach to discover new GANs and can be used in an open-world setup.
arXiv Detail & Related papers (2021-05-10T18:00:13Z) - Provable Generalization of SGD-trained Neural Networks of Any Width in
the Presence of Adversarial Label Noise [85.59576523297568]
We consider a one-hidden-layer leaky ReLU network of arbitrary width trained by gradient descent.
We prove that SGD produces neural networks that have classification accuracy competitive with that of the best halfspace over the distribution.
arXiv Detail & Related papers (2021-01-04T18:32:49Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
Building on the success of deep learning, Generative Adversarial Networks (GANs) provide a modern approach to learn a probability distribution from observed samples.
GANs often suffer from the mode collapse issue where the generator fails to capture all existing modes of the input distribution.
We take an information-theoretic approach and maximize a variational lower bound on the entropy of the generated samples to increase their diversity.
arXiv Detail & Related papers (2020-09-24T19:34:37Z) - Generative Hierarchical Features from Synthesizing Images [65.66756821069124]
We show that learning to synthesize images can bring remarkable hierarchical visual features that are generalizable across a wide range of applications.
The visual feature produced by our encoder, termed as Generative Hierarchical Feature (GH-Feat), has strong transferability to both generative and discriminative tasks.
arXiv Detail & Related papers (2020-07-20T18:04:14Z) - Closed-Form Factorization of Latent Semantics in GANs [65.42778970898534]
A rich set of interpretable dimensions has been shown to emerge in the latent space of the Generative Adversarial Networks (GANs) trained for synthesizing images.
In this work, we examine the internal representation learned by GANs to reveal the underlying variation factors in an unsupervised manner.
We propose a closed-form factorization algorithm for latent semantic discovery by directly decomposing the pre-trained weights.
arXiv Detail & Related papers (2020-07-13T18:05:36Z) - Brainstorming Generative Adversarial Networks (BGANs): Towards
Multi-Agent Generative Models with Distributed Private Datasets [70.62568022925971]
generative adversarial networks (GANs) must be fed by large datasets that adequately represent the data space.
In many scenarios, the available datasets may be limited and distributed across multiple agents, each of which is seeking to learn the distribution of the data on its own.
In this paper, a novel brainstorming GAN (BGAN) architecture is proposed using which multiple agents can generate real-like data samples while operating in a fully distributed manner.
arXiv Detail & Related papers (2020-02-02T02:58:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.