Atoms in a spin dependent optical potential: ground state topology and
magnetization
- URL: http://arxiv.org/abs/2105.12650v3
- Date: Fri, 4 Mar 2022 13:21:22 GMT
- Title: Atoms in a spin dependent optical potential: ground state topology and
magnetization
- Authors: Piotr Szulim, Marek Trippenbach, Y. B. Band, Mariusz Gajda,
Miros{\l}aw Brewczyk
- Abstract summary: We investigate a Bose-Einstein condensate of $F= 1$ $87$Rb atoms in a 2D spin-dependent optical lattice.
The atoms behave as a quantum rotor with angular momentum given by the sum of the atomic rotational motion angular momentum and the hyperfine spin.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate a Bose-Einstein condensate of $F= 1$ $^{87}$Rb atoms in a 2D
spin-dependent optical lattice generated by intersecting laser beams with a
superposition of polarizations. For $^{87}$Rb the effective interaction of an
atom with the electromagnetic field contains a scalar and a vector (called as
fictitious magnetic field, $B_{fic}$) potentials. The Rb atoms behave as a
quantum rotor (QR) with angular momentum given by the sum of the atomic
rotational motion angular momentum and the hyperfine spin. The ground state of
the QR is affected upon applying an external magnetic field, $B_{ext}$,
perpendicular to the plane of QR motion and a sudden change of its topology
occurs as the ratio $B_{ext}/B_{fic}$ exceeds critical value. It is shown that
the change of topology of the QR ground state is a result of combined action of
Zeeman and Einstein-de Haas effects. The first transfers atoms to the largest
hyperfine component to polarize the sample along the field as the external
magnetic field is increased. The second sweeps spin to rotational angular
momentum, modifying the kinetic energy of the atoms.
Related papers
- Acceleration and twisting of neutral atoms by strong elliptically polarized short-wavelength laser pulses [0.0]
We have investigated non-dipole effects in the interaction of a hydrogen atom with elliptically polarized laser pulses of intensity 10$14$ W/cm$2$ with about 8 fs duration.
The transition from linear to elliptical laser polarization leads to the twisting of the atom relative to the axis directed along the pulse propagation.
arXiv Detail & Related papers (2024-08-16T09:11:34Z) - Hyperfine-to-rotational energy transfer in ultracold atom-molecule collisions [0.0]
Energy transfer between different mechanical degrees of freedom in atom-molecule collisions has been widely studied and largely understood.
Here, we directly observed the energy transfer from atomic hyperfine to molecular rotation in the $87$Rb.
The observations confirm that spin is coupled to mechanical rotation at short range and establish a benchmark for future theoretical studies.
arXiv Detail & Related papers (2024-07-11T23:20:14Z) - Spin-zero bound states on the 2D Klein-Gordon equation under uniform
magnetic field [0.0]
We present an interaction modeling for the relativistic spin-0 charged particles moving in a uniform magnetic field.
As a functional approach to the nuclear interaction, we consider particle bound states without antiparticle regime.
Putting the approximation to spin-zero motion with $V(r)$$neq$$0$ and $S(r)$$=$$0$, one can introduced solvable model in the 2D polar space.
arXiv Detail & Related papers (2022-08-09T13:28:23Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - Emission of Spin-correlated Matter-wave Jets from Spinor Bose-Einstein
Condensates [1.8353070352474108]
We report the observation of matter-wave jet emission in a strongly ferromagnetic spinor Bose-Einstein condensate of $7$Li atoms.
The matter-wave jets of different spin states ($|F=1,m_F=pm1rangle$) can be a macroscopic Einstein-Podolsky-Rosen state with spacelike separation.
arXiv Detail & Related papers (2021-02-15T15:55:28Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.