CARLS: Cross-platform Asynchronous Representation Learning System
- URL: http://arxiv.org/abs/2105.12849v1
- Date: Wed, 26 May 2021 21:19:02 GMT
- Title: CARLS: Cross-platform Asynchronous Representation Learning System
- Authors: Chun-Ta Lu, Yun Zeng, Da-Cheng Juan, Yicheng Fan, Zhe Li, Jan Dlabal,
Yi-Ting Chen, Arjun Gopalan, Allan Heydon, Chun-Sung Ferng, Reah Miyara,
Ariel Fuxman, Futang Peng, Zhen Li, Tom Duerig, Andrew Tomkins
- Abstract summary: We propose CARLS, a novel framework for augmenting the capacity of existing deep learning frameworks.
We describe three learning paradigms that can be scaled up efficiently by CARLS.
- Score: 24.96062146968367
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In this work, we propose CARLS, a novel framework for augmenting the capacity
of existing deep learning frameworks by enabling multiple components -- model
trainers, knowledge makers and knowledge banks -- to concertedly work together
in an asynchronous fashion across hardware platforms. The proposed CARLS is
particularly suitable for learning paradigms where model training benefits from
additional knowledge inferred or discovered during training, such as node
embeddings for graph neural networks or reliable pseudo labels from model
predictions. We also describe three learning paradigms -- semi-supervised
learning, curriculum learning and multimodal learning -- as examples that can
be scaled up efficiently by CARLS. One version of CARLS has been open-sourced
and available for download at:
https://github.com/tensorflow/neural-structured-learning/tree/master/research/carls
Related papers
- PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [65.57123249246358]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Structured Cooperative Learning with Graphical Model Priors [98.53322192624594]
We study how to train personalized models for different tasks on decentralized devices with limited local data.
We propose "Structured Cooperative Learning (SCooL)", in which a cooperation graph across devices is generated by a graphical model.
We evaluate SCooL and compare it with existing decentralized learning methods on an extensive set of benchmarks.
arXiv Detail & Related papers (2023-06-16T02:41:31Z) - Knowledge Transfer For On-Device Speech Emotion Recognition with Neural
Structured Learning [19.220263739291685]
Speech emotion recognition (SER) has been a popular research topic in human-computer interaction (HCI)
We propose a neural structured learning (NSL) framework through building synthesized graphs.
Our experiments demonstrate that training a lightweight SER model on the target dataset with speech samples and graphs can not only produce small SER models, but also enhance the model performance.
arXiv Detail & Related papers (2022-10-26T18:38:42Z) - Implicit Offline Reinforcement Learning via Supervised Learning [83.8241505499762]
Offline Reinforcement Learning (RL) via Supervised Learning is a simple and effective way to learn robotic skills from a dataset collected by policies of different expertise levels.
We show how implicit models can leverage return information and match or outperform explicit algorithms to acquire robotic skills from fixed datasets.
arXiv Detail & Related papers (2022-10-21T21:59:42Z) - DMCNet: Diversified Model Combination Network for Understanding
Engagement from Video Screengrabs [0.4397520291340695]
Engagement plays a major role in developing intelligent educational interfaces.
Non-deep learning models are based on the combination of popular algorithms such as Histogram of Oriented Gradient (HOG), Support Vector Machine (SVM), Scale Invariant Feature Transform (SIFT) and Speeded Up Robust Features (SURF)
The deep learning methods include Densely Connected Convolutional Networks (DenseNet-121), Residual Network (ResNet-18) and MobileNetV1.
arXiv Detail & Related papers (2022-04-13T15:24:38Z) - Model LEGO: Creating Models Like Disassembling and Assembling Building Blocks [53.09649785009528]
In this paper, we explore a paradigm that does not require training to obtain new models.
Similar to the birth of CNN inspired by receptive fields in the biological visual system, we propose Model Disassembling and Assembling.
For model assembling, we present the alignment padding strategy and parameter scaling strategy to construct a new model tailored for a specific task.
arXiv Detail & Related papers (2022-03-25T05:27:28Z) - Interleaving Learning, with Application to Neural Architecture Search [12.317568257671427]
We propose a novel machine learning framework referred to as interleaving learning (IL)
In our framework, a set of models collaboratively learn a data encoder in an interleaving fashion.
We apply interleaving learning to search neural architectures for image classification on CIFAR-10, CIFAR-100, and ImageNet.
arXiv Detail & Related papers (2021-03-12T00:54:22Z) - Flexible model composition in machine learning and its implementation in
MLJ [1.1091975655053545]
A graph-based protocol called learning networks' which combine assorted machine learning models into meta-models is described.
It is shown that learning networks are are sufficiently flexible to include Wolpert's model stacking, with out-of-sample predictions for the base learners.
arXiv Detail & Related papers (2020-12-31T08:49:43Z) - Small-Group Learning, with Application to Neural Architecture Search [17.86826990290058]
In human learning, a small group of students work together towards the same learning objective, where they express their understanding of a topic to their peers, compare their ideas, and help each other to trouble-shoot problems.
In this paper, we aim to investigate whether this human learning method can be borrowed to train better machine learning models, by developing a novel ML framework -- small-group learning (SGL)
SGL is formulated as a multi-level optimization framework consisting of three learning stages: each learner trains a model independently and uses this model to perform pseudo-labeling; each learner trains another model using datasets pseudo-
arXiv Detail & Related papers (2020-12-23T05:56:47Z) - Efficient Crowd Counting via Structured Knowledge Transfer [122.30417437707759]
Crowd counting is an application-oriented task and its inference efficiency is crucial for real-world applications.
We propose a novel Structured Knowledge Transfer framework to generate a lightweight but still highly effective student network.
Our models obtain at least 6.5$times$ speed-up on an Nvidia 1080 GPU and even achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-03-23T08:05:41Z) - Revisiting Meta-Learning as Supervised Learning [69.2067288158133]
We aim to provide a principled, unifying framework by revisiting and strengthening the connection between meta-learning and traditional supervised learning.
By treating pairs of task-specific data sets and target models as (feature, label) samples, we can reduce many meta-learning algorithms to instances of supervised learning.
This view not only unifies meta-learning into an intuitive and practical framework but also allows us to transfer insights from supervised learning directly to improve meta-learning.
arXiv Detail & Related papers (2020-02-03T06:13:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.