Cross-Referencing Self-Training Network for Sound Event Detection in
Audio Mixtures
- URL: http://arxiv.org/abs/2105.13392v1
- Date: Thu, 27 May 2021 18:46:59 GMT
- Title: Cross-Referencing Self-Training Network for Sound Event Detection in
Audio Mixtures
- Authors: Sangwook Park, David K. Han, Mounya Elhilali
- Abstract summary: This paper proposes a semi-supervised method for generating pseudo-labels from unsupervised data using a student-teacher scheme that balances self-training and cross-training.
The results of these methods on both "validation" and "public evaluation" sets of DESED database show significant improvement compared to the state-of-the art systems in semi-supervised learning.
- Score: 23.568610919253352
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Sound event detection is an important facet of audio tagging that aims to
identify sounds of interest and define both the sound category and time
boundaries for each sound event in a continuous recording. With advances in
deep neural networks, there has been tremendous improvement in the performance
of sound event detection systems, although at the expense of costly data
collection and labeling efforts. In fact, current state-of-the-art methods
employ supervised training methods that leverage large amounts of data samples
and corresponding labels in order to facilitate identification of sound
category and time stamps of events. As an alternative, the current study
proposes a semi-supervised method for generating pseudo-labels from
unsupervised data using a student-teacher scheme that balances self-training
and cross-training. Additionally, this paper explores post-processing which
extracts sound intervals from network prediction, for further improvement in
sound event detection performance. The proposed approach is evaluated on sound
event detection task for the DCASE2020 challenge. The results of these methods
on both "validation" and "public evaluation" sets of DESED database show
significant improvement compared to the state-of-the art systems in
semi-supervised learning.
Related papers
- Towards Open-Vocabulary Audio-Visual Event Localization [59.23161248808759]
We introduce the Open-Vocabulary Audio-Visual Event localization problem.
This problem requires localizing audio-visual events and predicting explicit categories for both seen and unseen data at inference.
We propose the OV-AVEBench dataset, comprising 24,800 videos across 67 real-life audio-visual scenes.
arXiv Detail & Related papers (2024-11-18T04:35:20Z) - Training-Free Deepfake Voice Recognition by Leveraging Large-Scale Pre-Trained Models [52.04189118767758]
Generalization is a main issue for current audio deepfake detectors.
In this paper we study the potential of large-scale pre-trained models for audio deepfake detection.
arXiv Detail & Related papers (2024-05-03T15:27:11Z) - Pretraining Representations for Bioacoustic Few-shot Detection using
Supervised Contrastive Learning [10.395255631261458]
In bioacoustic applications, most tasks come with few labelled training data, because annotating long recordings is time consuming and costly.
We show that learning a rich feature extractor from scratch can be achieved by leveraging data augmentation using a supervised contrastive learning framework.
We obtain an F-score of 63.46% on the validation set and 42.7% on the test set, ranking second in the DCASE challenge.
arXiv Detail & Related papers (2023-09-02T09:38:55Z) - DiffSED: Sound Event Detection with Denoising Diffusion [70.18051526555512]
We reformulate the SED problem by taking a generative learning perspective.
Specifically, we aim to generate sound temporal boundaries from noisy proposals in a denoising diffusion process.
During training, our model learns to reverse the noising process by converting noisy latent queries to the groundtruth versions.
arXiv Detail & Related papers (2023-08-14T17:29:41Z) - Segment-level Metric Learning for Few-shot Bioacoustic Event Detection [56.59107110017436]
We propose a segment-level few-shot learning framework that utilizes both the positive and negative events during model optimization.
Our system achieves an F-measure of 62.73 on the DCASE 2022 challenge task 5 (DCASE2022-T5) validation set, outperforming the performance of the baseline prototypical network 34.02 by a large margin.
arXiv Detail & Related papers (2022-07-15T22:41:30Z) - A benchmark of state-of-the-art sound event detection systems evaluated
on synthetic soundscapes [10.512055210540668]
We study the solutions proposed by participants to analyze their robustness to varying level target to non-target signal-to-noise ratio and to temporal localization of target sound events.
Results show that systems tend to spuriously predict short events when non-target events are present.
arXiv Detail & Related papers (2022-02-03T09:41:31Z) - SoundDet: Polyphonic Sound Event Detection and Localization from Raw
Waveform [48.68714598985078]
SoundDet is an end-to-end trainable and light-weight framework for polyphonic moving sound event detection and localization.
SoundDet directly consumes the raw, multichannel waveform and treats the temporal sound event as a complete sound-object" to be detected.
A dense sound proposal event map is then constructed to handle the challenges of predicting events with large varying temporal duration.
arXiv Detail & Related papers (2021-06-13T11:43:41Z) - Audiovisual transfer learning for audio tagging and sound event
detection [21.574781022415372]
We study the merit of transfer learning for two sound recognition problems, i.e., audio tagging and sound event detection.
We adapt a baseline system utilizing only spectral acoustic inputs to make use of pretrained auditory and visual features.
We perform experiments with these modified models on an audiovisual multi-label data set.
arXiv Detail & Related papers (2021-06-09T21:55:05Z) - Unsupervised Domain Adaptation for Acoustic Scene Classification Using
Band-Wise Statistics Matching [69.24460241328521]
Machine learning algorithms can be negatively affected by mismatches between training (source) and test (target) data distributions.
We propose an unsupervised domain adaptation method that consists of aligning the first- and second-order sample statistics of each frequency band of target-domain acoustic scenes to the ones of the source-domain training dataset.
We show that the proposed method outperforms the state-of-the-art unsupervised methods found in the literature in terms of both source- and target-domain classification accuracy.
arXiv Detail & Related papers (2020-04-30T23:56:05Z) - Active Learning for Sound Event Detection [18.750572243562576]
This paper proposes an active learning system for sound event detection (SED)
It aims at maximizing the accuracy of a learned SED model with limited annotation effort.
Remarkably, the required annotation effort can be greatly reduced on the dataset where target sound events are rare.
arXiv Detail & Related papers (2020-02-12T14:46:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.