Do not explain without context: addressing the blind spot of model
explanations
- URL: http://arxiv.org/abs/2105.13787v1
- Date: Fri, 28 May 2021 12:48:40 GMT
- Title: Do not explain without context: addressing the blind spot of model
explanations
- Authors: Katarzyna Wo\'znica, Katarzyna P\k{e}kala, Hubert Baniecki, Wojciech
Kretowicz, El\.zbieta Sienkiewicz and Przemys{\l}aw Biecek
- Abstract summary: This paper highlights a blind spot which is often overlooked when monitoring and auditing machine learning models.
We discuss that many model explanations depend directly or indirectly on the choice of the referenced data distribution.
We showcase examples where small changes in the distribution lead to drastic changes in the explanations, such as a change in trend or, alarmingly, a conclusion.
- Score: 2.280298858971133
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The increasing number of regulations and expectations of predictive machine
learning models, such as so called right to explanation, has led to a large
number of methods promising greater interpretability. High demand has led to a
widespread adoption of XAI techniques like Shapley values, Partial Dependence
profiles or permutational variable importance. However, we still do not know
enough about their properties and how they manifest in the context in which
explanations are created by analysts, reviewed by auditors, and interpreted by
various stakeholders. This paper highlights a blind spot which, although
critical, is often overlooked when monitoring and auditing machine learning
models: the effect of the reference data on the explanation calculation. We
discuss that many model explanations depend directly or indirectly on the
choice of the referenced data distribution. We showcase examples where small
changes in the distribution lead to drastic changes in the explanations, such
as a change in trend or, alarmingly, a conclusion. Consequently, we postulate
that obtaining robust and useful explanations always requires supporting them
with a broader context.
Related papers
- Hard to Explain: On the Computational Hardness of In-Distribution Model Interpretation [0.9558392439655016]
The ability to interpret Machine Learning (ML) models is becoming increasingly essential.
Recent work has demonstrated that it is possible to formally assess interpretability by studying the computational complexity of explaining the decisions of various models.
arXiv Detail & Related papers (2024-08-07T17:20:52Z) - A Critical Assessment of Interpretable and Explainable Machine Learning for Intrusion Detection [0.0]
We study the use of overly complex and opaque ML models, unaccounted data imbalances and correlated features, inconsistent influential features across different explanation methods, and the implausible utility of explanations.
Specifically, we advise avoiding complex opaque models such as Deep Neural Networks and instead using interpretable ML models such as Decision Trees.
We find that feature-based model explanations are most often inconsistent across different settings.
arXiv Detail & Related papers (2024-07-04T15:35:42Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
Large language models (LLMs) have demonstrated impressive capabilities in natural language processing.
This paper introduces a taxonomy of explainability techniques and provides a structured overview of methods for explaining Transformer-based language models.
arXiv Detail & Related papers (2023-09-02T22:14:26Z) - Counterfactuals of Counterfactuals: a back-translation-inspired approach
to analyse counterfactual editors [3.4253416336476246]
We focus on the analysis of counterfactual, contrastive explanations.
We propose a new back translation-inspired evaluation methodology.
We show that by iteratively feeding the counterfactual to the explainer we can obtain valuable insights into the behaviour of both the predictor and the explainer models.
arXiv Detail & Related papers (2023-05-26T16:04:28Z) - Explainability in Process Outcome Prediction: Guidelines to Obtain
Interpretable and Faithful Models [77.34726150561087]
We define explainability through the interpretability of the explanations and the faithfulness of the explainability model in the field of process outcome prediction.
This paper contributes a set of guidelines named X-MOP which allows selecting the appropriate model based on the event log specifications.
arXiv Detail & Related papers (2022-03-30T05:59:50Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
In computer vision applications, generative counterfactual methods indicate how to perturb a model's input to change its prediction.
We propose a counterfactual method that learns a perturbation in a disentangled latent space that is constrained using a diversity-enforcing loss.
Our model improves the success rate of producing high-quality valuable explanations when compared to previous state-of-the-art methods.
arXiv Detail & Related papers (2021-03-18T12:57:34Z) - Explainers in the Wild: Making Surrogate Explainers Robust to
Distortions through Perception [77.34726150561087]
We propose a methodology to evaluate the effect of distortions in explanations by embedding perceptual distances.
We generate explanations for images in the Imagenet-C dataset and demonstrate how using a perceptual distances in the surrogate explainer creates more coherent explanations for the distorted and reference images.
arXiv Detail & Related papers (2021-02-22T12:38:53Z) - The Struggles of Feature-Based Explanations: Shapley Values vs. Minimal
Sufficient Subsets [61.66584140190247]
We show that feature-based explanations pose problems even for explaining trivial models.
We show that two popular classes of explainers, Shapley explainers and minimal sufficient subsets explainers, target fundamentally different types of ground-truth explanations.
arXiv Detail & Related papers (2020-09-23T09:45:23Z) - Deducing neighborhoods of classes from a fitted model [68.8204255655161]
In this article a new kind of interpretable machine learning method is presented.
It can help to understand the partitioning of the feature space into predicted classes in a classification model using quantile shifts.
Basically, real data points (or specific points of interest) are used and the changes of the prediction after slightly raising or decreasing specific features are observed.
arXiv Detail & Related papers (2020-09-11T16:35:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.