Model Mis-specification and Algorithmic Bias
- URL: http://arxiv.org/abs/2105.15182v1
- Date: Mon, 31 May 2021 17:45:12 GMT
- Title: Model Mis-specification and Algorithmic Bias
- Authors: Runshan Fu, Yangfan Liang, Peter Zhang
- Abstract summary: Machine learning algorithms are increasingly used to inform critical decisions.
There is a growing concern about bias, that algorithms may produce uneven outcomes for individuals in different demographic groups.
In this work, we measure bias as the difference between mean prediction errors across groups.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Machine learning algorithms are increasingly used to inform critical
decisions. There is a growing concern about bias, that algorithms may produce
uneven outcomes for individuals in different demographic groups. In this work,
we measure bias as the difference between mean prediction errors across groups.
We show that even with unbiased input data, when a model is mis-specified: (1)
population-level mean prediction error can still be negligible, but group-level
mean prediction errors can be large; (2) such errors are not equal across
groups; and (3) the difference between errors, i.e., bias, can take the
worst-case realization. That is, when there are two groups of the same size,
mean prediction errors for these two groups have the same magnitude but
opposite signs. In closed form, we show such errors and bias are functions of
the first and second moments of the joint distribution of features (for linear
and probit regressions). We also conduct numerical experiments to show similar
results in more general settings. Our work provides a first step for decoupling
the impact of different causes of bias.
Related papers
- Less can be more: representational vs. stereotypical gender bias in facial expression recognition [3.9698529891342207]
Machine learning models can inherit biases from their training data, leading to discriminatory or inaccurate predictions.
This paper investigates the propagation of demographic biases from datasets into machine learning models.
We focus on the gender demographic component, analyzing two types of bias: representational and stereotypical.
arXiv Detail & Related papers (2024-06-25T09:26:49Z) - Debiasing Machine Learning Models by Using Weakly Supervised Learning [3.3298048942057523]
We tackle the problem of bias mitigation of algorithmic decisions in a setting where both the output of the algorithm and the sensitive variable are continuous.
Typical examples are unfair decisions made with respect to the age or the financial status.
Our bias mitigation strategy is a weakly supervised learning method which requires that a small portion of the data can be measured in a fair manner.
arXiv Detail & Related papers (2024-02-23T18:11:32Z) - It's an Alignment, Not a Trade-off: Revisiting Bias and Variance in Deep
Models [51.66015254740692]
We show that for an ensemble of deep learning based classification models, bias and variance are emphaligned at a sample level.
We study this phenomenon from two theoretical perspectives: calibration and neural collapse.
arXiv Detail & Related papers (2023-10-13T17:06:34Z) - On Fairness and Stability: Is Estimator Variance a Friend or a Foe? [6.751310968561177]
We propose a new family of performance measures based on group-wise parity in variance.
We develop and release an open-source library that reconciles uncertainty quantification techniques with fairness analysis.
arXiv Detail & Related papers (2023-02-09T09:35:36Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Understanding Unfairness in Fraud Detection through Model and Data Bias
Interactions [4.159343412286401]
We argue that algorithmic unfairness stems from interactions between models and biases in the data.
We study a set of hypotheses regarding the fairness-accuracy trade-offs that fairness-blind ML algorithms exhibit under different data bias settings.
arXiv Detail & Related papers (2022-07-13T15:18:30Z) - Fair Group-Shared Representations with Normalizing Flows [68.29997072804537]
We develop a fair representation learning algorithm which is able to map individuals belonging to different groups in a single group.
We show experimentally that our methodology is competitive with other fair representation learning algorithms.
arXiv Detail & Related papers (2022-01-17T10:49:49Z) - Balancing out Bias: Achieving Fairness Through Training Reweighting [58.201275105195485]
Bias in natural language processing arises from models learning characteristics of the author such as gender and race.
Existing methods for mitigating and measuring bias do not directly account for correlations between author demographics and linguistic variables.
This paper introduces a very simple but highly effective method for countering bias using instance reweighting.
arXiv Detail & Related papers (2021-09-16T23:40:28Z) - Why do classifier accuracies show linear trends under distribution
shift? [58.40438263312526]
accuracies of models on one data distribution are approximately linear functions of the accuracies on another distribution.
We assume the probability that two models agree in their predictions is higher than what we can infer from their accuracy levels alone.
We show that a linear trend must occur when evaluating models on two distributions unless the size of the distribution shift is large.
arXiv Detail & Related papers (2020-12-31T07:24:30Z) - LOGAN: Local Group Bias Detection by Clustering [86.38331353310114]
We argue that evaluating bias at the corpus level is not enough for understanding how biases are embedded in a model.
We propose LOGAN, a new bias detection technique based on clustering.
Experiments on toxicity classification and object classification tasks show that LOGAN identifies bias in a local region.
arXiv Detail & Related papers (2020-10-06T16:42:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.