Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning
- URL: http://arxiv.org/abs/2106.00273v4
- Date: Wed, 5 Jun 2024 02:36:34 GMT
- Title: Improving the Adversarial Robustness for Speaker Verification by Self-Supervised Learning
- Authors: Haibin Wu, Xu Li, Andy T. Liu, Zhiyong Wu, Helen Meng, Hung-yi Lee,
- Abstract summary: This work is among the first to perform adversarial defense for ASV without knowing the specific attack algorithms.
We propose to perform adversarial defense from two perspectives: 1) adversarial perturbation purification and 2) adversarial perturbation detection.
Experimental results show that our detection module effectively shields the ASV by detecting adversarial samples with an accuracy of around 80%.
- Score: 95.60856995067083
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Previous works have shown that automatic speaker verification (ASV) is seriously vulnerable to malicious spoofing attacks, such as replay, synthetic speech, and recently emerged adversarial attacks. Great efforts have been dedicated to defending ASV against replay and synthetic speech; however, only a few approaches have been explored to deal with adversarial attacks. All the existing approaches to tackle adversarial attacks for ASV require the knowledge for adversarial samples generation, but it is impractical for defenders to know the exact attack algorithms that are applied by the in-the-wild attackers. This work is among the first to perform adversarial defense for ASV without knowing the specific attack algorithms. Inspired by self-supervised learning models (SSLMs) that possess the merits of alleviating the superficial noise in the inputs and reconstructing clean samples from the interrupted ones, this work regards adversarial perturbations as one kind of noise and conducts adversarial defense for ASV by SSLMs. Specifically, we propose to perform adversarial defense from two perspectives: 1) adversarial perturbation purification and 2) adversarial perturbation detection. Experimental results show that our detection module effectively shields the ASV by detecting adversarial samples with an accuracy of around 80%. Moreover, since there is no common metric for evaluating the adversarial defense performance for ASV, this work also formalizes evaluation metrics for adversarial defense considering both purification and detection based approaches into account. We sincerely encourage future works to benchmark their approaches based on the proposed evaluation framework.
Related papers
- Voting for the right answer: Adversarial defense for speaker
verification [79.10523688806852]
ASV is under the radar of adversarial attacks, which are similar to their original counterparts from human's perception.
We propose the idea of "voting for the right answer" to prevent risky decisions of ASV in blind spot areas.
Experimental results show that our proposed method improves the robustness against both the limited-knowledge attackers.
arXiv Detail & Related papers (2021-06-15T04:05:28Z) - Adversarial defense for automatic speaker verification by cascaded
self-supervised learning models [101.42920161993455]
More and more malicious attackers attempt to launch adversarial attacks at automatic speaker verification (ASV) systems.
We propose a standard and attack-agnostic method based on cascaded self-supervised learning models to purify the adversarial perturbations.
Experimental results demonstrate that the proposed method achieves effective defense performance and can successfully counter adversarial attacks.
arXiv Detail & Related papers (2021-02-14T01:56:43Z) - Investigating Robustness of Adversarial Samples Detection for Automatic
Speaker Verification [78.51092318750102]
This work proposes to defend ASV systems against adversarial attacks with a separate detection network.
A VGG-like binary classification detector is introduced and demonstrated to be effective on detecting adversarial samples.
arXiv Detail & Related papers (2020-06-11T04:31:56Z) - Defense for Black-box Attacks on Anti-spoofing Models by Self-Supervised
Learning [71.17774313301753]
We explore the robustness of self-supervised learned high-level representations by using them in the defense against adversarial attacks.
Experimental results on the ASVspoof 2019 dataset demonstrate that high-level representations extracted by Mockingjay can prevent the transferability of adversarial examples.
arXiv Detail & Related papers (2020-06-05T03:03:06Z) - Defense against adversarial attacks on spoofing countermeasures of ASV [95.87555881176529]
This paper introduces a passive defense method, spatial smoothing, and a proactive defense method, adversarial training, to mitigate the vulnerability of ASV spoofing countermeasure models.
The experimental results show that these two defense methods positively help spoofing countermeasure models counter adversarial examples.
arXiv Detail & Related papers (2020-03-06T08:08:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.