Uncovering Constraint-Based Behavior in Neural Models via Targeted
Fine-Tuning
- URL: http://arxiv.org/abs/2106.01207v1
- Date: Wed, 2 Jun 2021 14:52:11 GMT
- Title: Uncovering Constraint-Based Behavior in Neural Models via Targeted
Fine-Tuning
- Authors: Forrest Davis and Marten van Schijndel
- Abstract summary: We show that competing linguistic processes within a language obscure underlying linguistic knowledge.
While human behavior has been found to be similar across languages, we find cross-linguistic variation in model behavior.
Our results suggest that models need to learn both the linguistic constraints in a language and their relative ranking, with mismatches in either producing non-human-like behavior.
- Score: 9.391375268580806
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A growing body of literature has focused on detailing the linguistic
knowledge embedded in large, pretrained language models. Existing work has
shown that non-linguistic biases in models can drive model behavior away from
linguistic generalizations. We hypothesized that competing linguistic processes
within a language, rather than just non-linguistic model biases, could obscure
underlying linguistic knowledge. We tested this claim by exploring a single
phenomenon in four languages: English, Chinese, Spanish, and Italian. While
human behavior has been found to be similar across languages, we find
cross-linguistic variation in model behavior. We show that competing processes
in a language act as constraints on model behavior and demonstrate that
targeted fine-tuning can re-weight the learned constraints, uncovering
otherwise dormant linguistic knowledge in models. Our results suggest that
models need to learn both the linguistic constraints in a language and their
relative ranking, with mismatches in either producing non-human-like behavior.
Related papers
- Does Liking Yellow Imply Driving a School Bus? Semantic Leakage in Language Models [113.58052868898173]
We identify and characterize a phenomenon never discussed before, where models leak irrelevant information from the prompt into the generation in unexpected ways.
We propose an evaluation setting to detect semantic leakage both by humans and automatically, curate a diverse test suite for diagnosing this behavior, and measure significant semantic leakage in 13 flagship models.
arXiv Detail & Related papers (2024-08-12T22:30:55Z) - Modeling language contact with the Iterated Learning Model [0.0]
Iterated learning models are agent-based models of language change.
A recently introduced type of iterated learning model, the Semi-Supervised ILM is used to simulate language contact.
arXiv Detail & Related papers (2024-06-11T01:43:23Z) - Diffusion Language Models Can Perform Many Tasks with Scaling and
Instruction-Finetuning [56.03057119008865]
We show that scaling diffusion language models can effectively make them strong language learners.
We build competent diffusion language models at scale by first acquiring knowledge from massive data.
Experiments show that scaling diffusion language models consistently improves performance across downstream language tasks.
arXiv Detail & Related papers (2023-08-23T16:01:12Z) - A fine-grained comparison of pragmatic language understanding in humans
and language models [2.231167375820083]
We compare language models and humans on seven pragmatic phenomena.
We find that the largest models achieve high accuracy and match human error patterns.
Preliminary evidence that models and humans are sensitive to similar linguistic cues.
arXiv Detail & Related papers (2022-12-13T18:34:59Z) - Causal Analysis of Syntactic Agreement Neurons in Multilingual Language
Models [28.036233760742125]
We causally probe multilingual language models (XGLM and multilingual BERT) across various languages.
We find significant neuron overlap across languages in autoregressive multilingual language models, but not masked language models.
arXiv Detail & Related papers (2022-10-25T20:43:36Z) - Transparency Helps Reveal When Language Models Learn Meaning [71.96920839263457]
Our systematic experiments with synthetic data reveal that, with languages where all expressions have context-independent denotations, both autoregressive and masked language models learn to emulate semantic relations between expressions.
Turning to natural language, our experiments with a specific phenomenon -- referential opacity -- add to the growing body of evidence that current language models do not well-represent natural language semantics.
arXiv Detail & Related papers (2022-10-14T02:35:19Z) - Integrating Linguistic Theory and Neural Language Models [2.870517198186329]
I present several case studies to illustrate how theoretical linguistics and neural language models are still relevant to each other.
This thesis contributes three studies that explore different aspects of the syntax-semantics interface in language models.
arXiv Detail & Related papers (2022-07-20T04:20:46Z) - Same Neurons, Different Languages: Probing Morphosyntax in Multilingual
Pre-trained Models [84.86942006830772]
We conjecture that multilingual pre-trained models can derive language-universal abstractions about grammar.
We conduct the first large-scale empirical study over 43 languages and 14 morphosyntactic categories with a state-of-the-art neuron-level probe.
arXiv Detail & Related papers (2022-05-04T12:22:31Z) - Towards Zero-shot Language Modeling [90.80124496312274]
We construct a neural model that is inductively biased towards learning human languages.
We infer this distribution from a sample of typologically diverse training languages.
We harness additional language-specific side information as distant supervision for held-out languages.
arXiv Detail & Related papers (2021-08-06T23:49:18Z) - Limits of Detecting Text Generated by Large-Scale Language Models [65.46403462928319]
Some consider large-scale language models that can generate long and coherent pieces of text as dangerous, since they may be used in misinformation campaigns.
Here we formulate large-scale language model output detection as a hypothesis testing problem to classify text as genuine or generated.
arXiv Detail & Related papers (2020-02-09T19:53:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.