Deep learning-based multi-output quantile forecasting of PV generation
- URL: http://arxiv.org/abs/2106.01271v1
- Date: Wed, 2 Jun 2021 16:28:10 GMT
- Title: Deep learning-based multi-output quantile forecasting of PV generation
- Authors: Jonathan Dumas, Colin Cointe, Xavier Fettweis, Bertrand Corn\'elusse
- Abstract summary: This paper develops probabilistic PV forecasters by taking advantage of recent breakthroughs in deep learning.
It tailored forecasting tool, named encoder-decoder, is implemented to compute intraday multi-output PV quantiles forecasts.
The models are trained using quantile regression, a non-parametric approach.
- Score: 34.51430520593065
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper develops probabilistic PV forecasters by taking advantage of
recent breakthroughs in deep learning. It tailored forecasting tool, named
encoder-decoder, is implemented to compute intraday multi-output PV quantiles
forecasts to efficiently capture the time correlation. The models are trained
using quantile regression, a non-parametric approach that assumes no prior
knowledge of the probabilistic forecasting distribution. The case study is
composed of PV production monitored on-site at the University of Li\`ege
(ULi\`ege), Belgium. The weather forecasts from the regional climate model
provided by the Laboratory of Climatology are used as inputs of the deep
learning models. The forecast quality is quantitatively assessed by the
continuous ranked probability and interval scores. The results indicate this
architecture improves the forecast quality and is computationally efficient to
be incorporated in an intraday decision-making tool for robust optimization.
Related papers
- When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Prediction-Powered Inference [68.97619568620709]
Prediction-powered inference is a framework for performing valid statistical inference when an experimental dataset is supplemented with predictions from a machine-learning system.
The framework yields simple algorithms for computing provably valid confidence intervals for quantities such as means, quantiles, and linear and logistic regression coefficients.
Prediction-powered inference could enable researchers to draw valid and more data-efficient conclusions using machine learning.
arXiv Detail & Related papers (2023-01-23T18:59:28Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - KPF-AE-LSTM: A Deep Probabilistic Model for Net-Load Forecasting in High
Solar Scenarios [0.0]
This paper presents a deep learning method to generate probabilistic forecasts of day-ahead net-load at 15-min resolution, at various solar penetration levels.
The models are shown to deliver superior forecast performance, as well as maintain superior training efficiency, in comparison to existing benchmark models.
arXiv Detail & Related papers (2022-03-05T10:54:54Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - An Interpretable Probabilistic Model for Short-Term Solar Power
Forecasting Using Natural Gradient Boosting [0.0]
We propose a two stage probabilistic forecasting framework able to generate highly accurate, reliable, and sharp forecasts.
The framework offers full transparency on both the point forecasts and the prediction intervals (PIs)
To highlight the performance and the applicability of the proposed framework, real data from two PV parks located in Southern Germany are employed.
arXiv Detail & Related papers (2021-08-05T12:59:38Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Forecasting Photovoltaic Power Production using a Deep Learning Sequence
to Sequence Model with Attention [0.0]
We propose a supervised deep learning model for end-to-end forecasting of PV power production.
The proposed model is based on two seminal concepts that led to significant performance improvements in other sequence-related fields.
The results show that the new design performs at or above the current state of the art of PV power forecasting.
arXiv Detail & Related papers (2020-08-06T17:20:08Z) - Supervised learning from noisy observations: Combining machine-learning
techniques with data assimilation [0.6091702876917281]
We show how to optimally combine forecast models and their inherent uncertainty with incoming noisy observations.
We show that the obtained forecast model has remarkably good forecast skill while being computationally cheap once trained.
Going beyond the task of forecasting, we show that our method can be used to generate reliable ensembles for probabilistic forecasting as well as to learn effective model closure in multi-scale systems.
arXiv Detail & Related papers (2020-07-14T22:29:37Z) - A framework for probabilistic weather forecast post-processing across
models and lead times using machine learning [3.1542695050861544]
We show how to bridge the gap between sets of separate forecasts from NWP models and the 'ideal' forecast for decision support.
We use Quantile Regression Forests to learn the error profile of each numerical model, and use these to apply empirically-derived probability distributions to forecasts.
Second, we combine these probabilistic forecasts using quantile averaging. Third, we interpolate between the aggregate quantiles in order to generate a full predictive distribution.
arXiv Detail & Related papers (2020-05-06T16:46:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.