SIMLR: Machine Learning inside the SIR model for COVID-19 Forecasting
- URL: http://arxiv.org/abs/2106.01590v1
- Date: Thu, 3 Jun 2021 04:22:43 GMT
- Title: SIMLR: Machine Learning inside the SIR model for COVID-19 Forecasting
- Authors: Roberto Vega, Leonardo Flores, Russell Greiner
- Abstract summary: The SIMLR model incorporates machine learning (ML) into the epidemiological SIR model.
For each region, SIMLR tracks the changes in the policies implemented at the government level.
It estimates the time-varying parameters of an SIR model for forecasting the number of new infections 1- to 4-weeks in advance.
- Score: 12.443598783888786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate forecasts of the number of newly infected people during an epidemic
are critical for making effective timely decisions. This paper addresses this
challenge using the SIMLR model, which incorporates machine learning (ML) into
the epidemiological SIR model. For each region, SIMLR tracks the changes in the
policies implemented at the government level, which it uses to estimate the
time-varying parameters of an SIR model for forecasting the number of new
infections 1- to 4-weeks in advance.It also forecasts the probability of
changes in those government policies at each of these future times, which is
essential for the longer-range forecasts. We applied SIMLR to data from regions
in Canada and in the United States,and show that its MAPE (mean average
percentage error) performance is as good as SOTA forecasting models, with the
added advantage of being an interpretable model. We expect that this approach
will be useful not only for forecasting COVID-19 infections, but also in
predicting the evolution of other infectious diseases.
Related papers
- Learning Augmentation Policies from A Model Zoo for Time Series Forecasting [58.66211334969299]
We introduce AutoTSAug, a learnable data augmentation method based on reinforcement learning.
By augmenting the marginal samples with a learnable policy, AutoTSAug substantially improves forecasting performance.
arXiv Detail & Related papers (2024-09-10T07:34:19Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
An extremely boosted neural network (XBNet) is used to predict clinical deterioration (CD)
The XGBoost model obtained the best results in predicting CD among Brazilian hospitals' data.
arXiv Detail & Related papers (2022-12-17T23:29:14Z) - Back2Future: Leveraging Backfill Dynamics for Improving Real-time
Predictions in Future [73.03458424369657]
In real-time forecasting in public health, data collection is a non-trivial and demanding task.
'Backfill' phenomenon and its effect on model performance has been barely studied in the prior literature.
We formulate a novel problem and neural framework Back2Future that aims to refine a given model's predictions in real-time.
arXiv Detail & Related papers (2021-06-08T14:48:20Z) - Comparison of Traditional and Hybrid Time Series Models for Forecasting
COVID-19 Cases [0.5849513679510832]
The coronavirus outbreak of December 2019 has already infected millions all over the world and continues to spread on.
Just when the curve of the outbreak had started to flatten, many countries have again started to witness a rise in cases.
A thorough analysis of time-series forecasting models is therefore required to equip state authorities and health officials with immediate strategies for future times.
arXiv Detail & Related papers (2021-05-05T14:56:27Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
We develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously.
STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete-time difference equations.
We conduct experiments using both county- and state-level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic.
arXiv Detail & Related papers (2020-12-08T21:21:47Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
We propose a general approach for learning time-variant parameters of dynamic compartmental models from epidemic data.
We forecast the epidemic evolution in Italy and France.
arXiv Detail & Related papers (2020-10-28T10:58:59Z) - Adaptive County Level COVID-19 Forecast Models: Analysis and Improvement [1.8899300124593645]
We adapt the state and county level model, TDEFSI-LONLY, to national and county level COVID-19 data.
We show that this model poorly forecasts the current pandemic.
We propose an alternate forecast model, it County Level Epidemiological Inference Recurrent Network (alg) that trains an LSTM backbone on national confirmed cases to learn a low dimensional time pattern.
arXiv Detail & Related papers (2020-06-16T17:20:54Z) - When and How to Lift the Lockdown? Global COVID-19 Scenario Analysis and
Policy Assessment using Compartmental Gaussian Processes [111.69190108272133]
coronavirus disease 2019 (COVID-19) global pandemic has led many countries to impose unprecedented lockdown measures.
Data-driven models that predict COVID-19 fatalities under different lockdown policy scenarios are essential.
This paper develops a Bayesian model for predicting the effects of COVID-19 lockdown policies in a global context.
arXiv Detail & Related papers (2020-05-13T18:21:50Z) - An Epidemiological Modelling Approach for Covid19 via Data Assimilation [18.837659009007705]
The global pandemic of the 2019-nCov requires the evaluation of policy interventions to mitigate future social and economic costs of quarantine measures worldwide.
We propose an epidemiological model for forecasting and policy evaluation which incorporates new data in real-time through variational data assimilation.
arXiv Detail & Related papers (2020-04-25T12:46:36Z) - Learning to Forecast and Forecasting to Learn from the COVID-19 Pandemic [10.796851110372593]
We propose a heterogeneous infection rate model with human mobility for epidemic modeling.
By linearizing the model and using weighted least squares, our model is able to quickly adapt to changing trends.
We show that during the earlier part of the epidemic, using travel data increases the predictions.
arXiv Detail & Related papers (2020-04-23T07:25:46Z) - Simulation of Covid-19 epidemic evolution: are compartmental models
really predictive? [0.0]
This paper addresses the question whether a SIR epidemiological model, enriched with asymptomatic and dead individual compartments, could provide reliable predictions on the epidemic evolution.
A machine learning approach based on particle swarm optimization (PSO) is proposed to automatically identify the model parameters based on a training set of data of progressive increasing size.
The analysis of the scatter in the forecasts shows that model predictions are quite sensitive to the size of the dataset used for training, and that further data are still required to achieve convergent -- and therefore reliable -- predictions.
arXiv Detail & Related papers (2020-04-14T08:42:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.