Self-Supervised Learning of Event-Based Optical Flow with Spiking Neural
Networks
- URL: http://arxiv.org/abs/2106.01862v1
- Date: Thu, 3 Jun 2021 14:03:41 GMT
- Title: Self-Supervised Learning of Event-Based Optical Flow with Spiking Neural
Networks
- Authors: Federico Paredes-Vall\'es, Jesse Hagenaars, Guido de Croon
- Abstract summary: A major challenge for neuromorphic computing is that learning algorithms for traditional artificial neural networks (ANNs) do not transfer directly to spiking neural networks (SNNs)
In this article, we focus on the self-supervised learning problem of optical flow estimation from event-based camera inputs.
We show that the performance of the proposed ANNs and SNNs are on par with that of the current state-of-the-art ANNs trained in a self-supervised manner.
- Score: 3.7384509727711923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neuromorphic sensing and computing hold a promise for highly energy-efficient
and high-bandwidth-sensor processing. A major challenge for neuromorphic
computing is that learning algorithms for traditional artificial neural
networks (ANNs) do not transfer directly to spiking neural networks (SNNs) due
to the discrete spikes and more complex neuronal dynamics. As a consequence,
SNNs have not yet been successfully applied to complex, large-scale tasks. In
this article, we focus on the self-supervised learning problem of optical flow
estimation from event-based camera inputs, and investigate the changes that are
necessary to the state-of-the-art ANN training pipeline in order to
successfully tackle it with SNNs. More specifically, we first modify the input
event representation to encode a much smaller time slice with minimal explicit
temporal information. Consequently, we make the network's neuronal dynamics and
recurrent connections responsible for integrating information over time.
Moreover, we reformulate the self-supervised loss function for event-based
optical flow to improve its convexity. We perform experiments with various
types of recurrent ANNs and SNNs using the proposed pipeline. Concerning SNNs,
we investigate the effects of elements such as parameter initialization and
optimization, surrogate gradient shape, and adaptive neuronal mechanisms. We
find that initialization and surrogate gradient width play a crucial part in
enabling learning with sparse inputs, while the inclusion of adaptivity and
learnable neuronal parameters can improve performance. We show that the
performance of the proposed ANNs and SNNs are on par with that of the current
state-of-the-art ANNs trained in a self-supervised manner.
Related papers
- A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Fluctuation-driven initialization for spiking neural network training [3.976291254896486]
Spiking neural networks (SNNs) underlie low-power, fault-tolerant information processing in the brain.
We develop a general strategy for SNNs inspired by the fluctuation-driven regime commonly observed in the brain.
arXiv Detail & Related papers (2022-06-21T09:48:49Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
Event-based vision sensors encode local pixel-wise brightness changes in streams of events rather than image frames.
Recent progress in object recognition from event-based sensors has come from conversions of deep neural networks.
We propose a hybrid architecture for end-to-end training of deep neural networks for event-based pattern recognition and object detection.
arXiv Detail & Related papers (2021-12-06T23:45:58Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
Spiking neural networks (SNNs) are brain-inspired models that enable energy-efficient implementation on neuromorphic hardware.
Most existing methods imitate the backpropagation framework and feedforward architectures for artificial neural networks.
We propose a novel training method that does not rely on the exact reverse of the forward computation.
arXiv Detail & Related papers (2021-09-29T07:46:54Z) - BackEISNN: A Deep Spiking Neural Network with Adaptive Self-Feedback and
Balanced Excitatory-Inhibitory Neurons [8.956708722109415]
Spiking neural networks (SNNs) transmit information through discrete spikes, which performs well in processing spatial-temporal information.
We propose a deep spiking neural network with adaptive self-feedback and balanced excitatory and inhibitory neurons (BackEISNN)
For the MNIST, FashionMNIST, and N-MNIST datasets, our model has achieved state-of-the-art performance.
arXiv Detail & Related papers (2021-05-27T08:38:31Z) - Skip-Connected Self-Recurrent Spiking Neural Networks with Joint
Intrinsic Parameter and Synaptic Weight Training [14.992756670960008]
We propose a new type of RSNN called Skip-Connected Self-Recurrent SNNs (ScSr-SNNs)
ScSr-SNNs can boost performance by up to 2.55% compared with other types of RSNNs trained by state-of-the-art BP methods.
arXiv Detail & Related papers (2020-10-23T22:27:13Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
Spiking neural networks (SNNs) have shown advantages over traditional artificial neural networks (ANNs) for low latency and high computational efficiency.
We propose a novel ANN-to-SNN conversion and layer-wise learning framework for rapid and efficient pattern recognition.
arXiv Detail & Related papers (2020-07-02T15:38:44Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
We show how a novel type of adaptive spiking recurrent neural network (SRNN) is able to achieve state-of-the-art performance.
We calculate a $>$100x energy improvement for our SRNNs over classical RNNs on the harder tasks.
arXiv Detail & Related papers (2020-05-24T01:04:53Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.