RL-DARTS: Differentiable Architecture Search for Reinforcement Learning
- URL: http://arxiv.org/abs/2106.02229v1
- Date: Fri, 4 Jun 2021 03:08:43 GMT
- Title: RL-DARTS: Differentiable Architecture Search for Reinforcement Learning
- Authors: Yingjie Miao, Xingyou Song, Daiyi Peng, Summer Yue, Eugene Brevdo,
Aleksandra Faust
- Abstract summary: We introduce RL-DARTS, one of the first applications of Differentiable Architecture Search (DARTS) in reinforcement learning (RL)
By replacing the image encoder with a DARTS supernet, our search method is sample-efficient, requires minimal extra compute resources, and is also compatible with off-policy and on-policy RL algorithms, needing only minor changes in preexisting code.
We show that the supernet gradually learns better cells, leading to alternative architectures which can be highly competitive against manually designed policies, but also verify previous design choices for RL policies.
- Score: 62.95469460505922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce RL-DARTS, one of the first applications of Differentiable
Architecture Search (DARTS) in reinforcement learning (RL) to search for
convolutional cells, applied to the Procgen benchmark. We outline the initial
difficulties of applying neural architecture search techniques in RL, and
demonstrate that by simply replacing the image encoder with a DARTS supernet,
our search method is sample-efficient, requires minimal extra compute
resources, and is also compatible with off-policy and on-policy RL algorithms,
needing only minor changes in preexisting code. Surprisingly, we find that the
supernet can be used as an actor for inference to generate replay data in
standard RL training loops, and thus train end-to-end. Throughout this training
process, we show that the supernet gradually learns better cells, leading to
alternative architectures which can be highly competitive against manually
designed policies, but also verify previous design choices for RL policies.
Related papers
- SRL: Scaling Distributed Reinforcement Learning to Over Ten Thousand Cores [13.948640763797776]
We present a novel abstraction on the dataflows of RL training, which unifies diverse RL training applications into a general framework.
We develop a scalable, efficient, and distributed RL system called ReaLly scalableRL, which allows efficient and massively parallelized training.
SRL is the first in the academic community to perform RL experiments at a large scale with over 15k CPU cores.
arXiv Detail & Related papers (2023-06-29T05:16:25Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
We cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL.
We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task.
We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
arXiv Detail & Related papers (2023-01-19T12:01:41Z) - Contrastive Learning as Goal-Conditioned Reinforcement Learning [147.28638631734486]
In reinforcement learning (RL), it is easier to solve a task if given a good representation.
While deep RL should automatically acquire such good representations, prior work often finds that learning representations in an end-to-end fashion is unstable.
We show (contrastive) representation learning methods can be cast as RL algorithms in their own right.
arXiv Detail & Related papers (2022-06-15T14:34:15Z) - Beyond Tabula Rasa: Reincarnating Reinforcement Learning [37.201451908129386]
Learning tabula rasa, that is without any prior knowledge, is the prevalent workflow in reinforcement learning (RL) research.
We present reincarnating RL as an alternative workflow, where prior computational work is reused or transferred between design iterations of an RL agent.
We find that existing approaches fail in this setting and propose a simple algorithm to address their limitations.
arXiv Detail & Related papers (2022-06-03T15:11:10Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Improving Generalization of Deep Reinforcement Learning-based TSP
Solvers [19.29028564568974]
We propose a novel approach named MAGIC that includes a deep learning architecture and a DRL training method.
Our architecture, which integrates a multilayer perceptron, a graph neural network, and an attention model, defines a policy that sequentially generates a traveling salesman solution.
Our training method includes several innovations: (1) we interleave DRL policy updates with local search (using a new local search technique), (2) we use a novel simple baseline, and (3) we apply gradient learning.
arXiv Detail & Related papers (2021-10-06T15:16:19Z) - Text Generation with Efficient (Soft) Q-Learning [91.47743595382758]
Reinforcement learning (RL) offers a more flexible solution by allowing users to plug in arbitrary task metrics as reward.
We introduce a new RL formulation for text generation from the soft Q-learning perspective.
We apply the approach to a wide range of tasks, including learning from noisy/negative examples, adversarial attacks, and prompt generation.
arXiv Detail & Related papers (2021-06-14T18:48:40Z) - Hierarchical Reinforcement Learning for Relay Selection and Power
Optimization in Two-Hop Cooperative Relay Network [7.5377621697101205]
We study the outage probability minimizing problem subjected to a total transmission power constraint in a two-hop cooperative relay network.
We use reinforcement learning (RL) methods to learn strategies for relay selection and power allocation.
We propose a hierarchical reinforcement learning (HRL) framework and training algorithm.
arXiv Detail & Related papers (2020-11-10T04:47:41Z) - Reinforcement Learning with Augmented Data [97.42819506719191]
We present Reinforcement Learning with Augmented Data (RAD), a simple plug-and-play module that can enhance most RL algorithms.
We show that augmentations such as random translate, crop, color jitter, patch cutout, random convolutions, and amplitude scale can enable simple RL algorithms to outperform complex state-of-the-art methods.
arXiv Detail & Related papers (2020-04-30T17:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.