Musical Prosody-Driven Emotion Classification: Interpreting Vocalists
Portrayal of Emotions Through Machine Learning
- URL: http://arxiv.org/abs/2106.02556v1
- Date: Fri, 4 Jun 2021 15:40:19 GMT
- Title: Musical Prosody-Driven Emotion Classification: Interpreting Vocalists
Portrayal of Emotions Through Machine Learning
- Authors: Farris Nicholas, Model Brian, Savery Richard, Weinberg Gil
- Abstract summary: The role of musical prosody remains under-explored despite several studies demonstrating a strong connection between prosody and emotion.
In this study, we restrict the input of traditional machine learning algorithms to the features of musical prosody.
We utilize a methodology for individual data collection from vocalists, and personal ground truth labeling by the artist themselves.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of classifying emotions within a musical track has received
widespread attention within the Music Information Retrieval (MIR) community.
Music emotion recognition has traditionally relied on the use of acoustic
features, verbal features, and metadata-based filtering. The role of musical
prosody remains under-explored despite several studies demonstrating a strong
connection between prosody and emotion. In this study, we restrict the input of
traditional machine learning algorithms to the features of musical prosody.
Furthermore, our proposed approach builds upon the prior by classifying
emotions under an expanded emotional taxonomy, using the Geneva Wheel of
Emotion. We utilize a methodology for individual data collection from
vocalists, and personal ground truth labeling by the artist themselves. We
found that traditional machine learning algorithms when limited to the features
of musical prosody (1) achieve high accuracies for a single singer, (2)
maintain high accuracy when the dataset is expanded to multiple singers, and
(3) achieve high accuracies when trained on a reduced subset of the total
features.
Related papers
- A Survey of Foundation Models for Music Understanding [60.83532699497597]
This work is one of the early reviews of the intersection of AI techniques and music understanding.
We investigated, analyzed, and tested recent large-scale music foundation models in respect of their music comprehension abilities.
arXiv Detail & Related papers (2024-09-15T03:34:14Z) - Towards Explainable and Interpretable Musical Difficulty Estimation: A Parameter-efficient Approach [49.2787113554916]
Estimating music piece difficulty is important for organizing educational music collections.
Our work employs explainable descriptors for difficulty estimation in symbolic music representations.
Our approach, evaluated in piano repertoire categorized in 9 classes, achieved 41.4% accuracy independently, with a mean squared error (MSE) of 1.7.
arXiv Detail & Related papers (2024-08-01T11:23:42Z) - Emotion Manipulation Through Music -- A Deep Learning Interactive Visual Approach [0.0]
We introduce a novel way to manipulate the emotional content of a song using AI tools.
Our goal is to achieve the desired emotion while leaving the original melody as intact as possible.
This research may contribute to on-demand custom music generation, the automated remixing of existing work, and music playlists tuned for emotional progression.
arXiv Detail & Related papers (2024-06-12T20:12:29Z) - Exploring and Applying Audio-Based Sentiment Analysis in Music [0.0]
The ability of a computational model to interpret musical emotions is largely unexplored.
This study seeks to (1) predict the emotion of a musical clip over time and (2) determine the next emotion value after the music in a time series to ensure seamless transitions.
arXiv Detail & Related papers (2024-02-22T22:34:06Z) - MusER: Musical Element-Based Regularization for Generating Symbolic
Music with Emotion [16.658813060879293]
We present a novel approach employing musical element-based regularization in the latent space to disentangle distinct elements.
By visualizing latent space, we conclude that MusER yields a disentangled and interpretable latent space.
Experimental results demonstrate that MusER outperforms the state-of-the-art models for generating emotional music.
arXiv Detail & Related papers (2023-12-16T03:50:13Z) - REMAST: Real-time Emotion-based Music Arrangement with Soft Transition [29.34094293561448]
Music as an emotional intervention medium has important applications in scenarios such as music therapy, games, and movies.
We propose REMAST to achieve emotion real-time fit and smooth transition simultaneously.
According to the evaluation results, REMAST surpasses the state-of-the-art methods in objective and subjective metrics.
arXiv Detail & Related papers (2023-05-14T00:09:48Z) - Affective Idiosyncratic Responses to Music [63.969810774018775]
We develop methods to measure affective responses to music from over 403M listener comments on a Chinese social music platform.
We test for musical, lyrical, contextual, demographic, and mental health effects that drive listener affective responses.
arXiv Detail & Related papers (2022-10-17T19:57:46Z) - Song Emotion Recognition: a Performance Comparison Between Audio
Features and Artificial Neural Networks [0.0]
We study the most common features and models used to tackle this problem, revealing which ones are best suited for recognizing emotion in a cappella songs.
In this paper, we studied the most common features and models used in recent publications to tackle this problem, revealing which ones are best suited for recognizing emotion in a cappella songs.
arXiv Detail & Related papers (2022-09-24T16:13:25Z) - Contrastive Learning with Positive-Negative Frame Mask for Music
Representation [91.44187939465948]
This paper proposes a novel Positive-nEgative frame mask for Music Representation based on the contrastive learning framework, abbreviated as PEMR.
We devise a novel contrastive learning objective to accommodate both self-augmented positives/negatives sampled from the same music.
arXiv Detail & Related papers (2022-03-17T07:11:42Z) - A Novel Multi-Task Learning Method for Symbolic Music Emotion
Recognition [76.65908232134203]
Symbolic Music Emotion Recognition(SMER) is to predict music emotion from symbolic data, such as MIDI and MusicXML.
In this paper, we present a simple multi-task framework for SMER, which incorporates the emotion recognition task with other emotion-related auxiliary tasks.
arXiv Detail & Related papers (2022-01-15T07:45:10Z) - Music Gesture for Visual Sound Separation [121.36275456396075]
"Music Gesture" is a keypoint-based structured representation to explicitly model the body and finger movements of musicians when they perform music.
We first adopt a context-aware graph network to integrate visual semantic context with body dynamics, and then apply an audio-visual fusion model to associate body movements with the corresponding audio signals.
arXiv Detail & Related papers (2020-04-20T17:53:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.