Aligning Pretraining for Detection via Object-Level Contrastive Learning
- URL: http://arxiv.org/abs/2106.02637v1
- Date: Fri, 4 Jun 2021 17:59:52 GMT
- Title: Aligning Pretraining for Detection via Object-Level Contrastive Learning
- Authors: Fangyun Wei, Yue Gao, Zhirong Wu, Han Hu, Stephen Lin
- Abstract summary: Image-level contrastive representation learning has proven to be highly effective as a generic model for transfer learning.
We argue that this could be sub-optimal and thus advocate a design principle which encourages alignment between the self-supervised pretext task and the downstream task.
Our method, called Selective Object COntrastive learning (SoCo), achieves state-of-the-art results for transfer performance on COCO detection.
- Score: 57.845286545603415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-level contrastive representation learning has proven to be highly
effective as a generic model for transfer learning. Such generality for
transfer learning, however, sacrifices specificity if we are interested in a
certain downstream task. We argue that this could be sub-optimal and thus
advocate a design principle which encourages alignment between the
self-supervised pretext task and the downstream task. In this paper, we follow
this principle with a pretraining method specifically designed for the task of
object detection. We attain alignment in the following three aspects: 1)
object-level representations are introduced via selective search bounding boxes
as object proposals; 2) the pretraining network architecture incorporates the
same dedicated modules used in the detection pipeline (e.g. FPN); 3) the
pretraining is equipped with object detection properties such as object-level
translation invariance and scale invariance. Our method, called Selective
Object COntrastive learning (SoCo), achieves state-of-the-art results for
transfer performance on COCO detection using a Mask R-CNN framework. Code and
models will be made available.
Related papers
- Few-Shot Object Detection with Sparse Context Transformers [37.106378859592965]
Few-shot detection is a major task in pattern recognition which seeks to localize objects using models trained with few labeled data.
We propose a novel sparse context transformer (SCT) that effectively leverages object knowledge in the source domain, and automatically learns a sparse context from only few training images in the target domain.
We evaluate the proposed method on two challenging few-shot object detection benchmarks, and empirical results show that the proposed method obtains competitive performance compared to the related state-of-the-art.
arXiv Detail & Related papers (2024-02-14T17:10:01Z) - Towards Few-Annotation Learning for Object Detection: Are
Transformer-based Models More Efficient ? [11.416621957617334]
In this paper, we propose a semi-supervised method tailored for the current state-of-the-art object detector Deformable DETR.
We evaluate our method on the semi-supervised object detection benchmarks COCO and Pascal VOC, and it outperforms previous methods, especially when annotations are scarce.
arXiv Detail & Related papers (2023-10-30T18:51:25Z) - Aligned Unsupervised Pretraining of Object Detectors with Self-training [41.03780087924593]
Unsupervised pretraining of object detectors has recently become a key component of object detector training.
We propose a framework that mitigates this issue and consists of three simple yet key ingredients.
We show that our strategy is also capable of pretraining from scratch (including the backbone) and works on complex images like COCO.
arXiv Detail & Related papers (2023-07-28T17:46:00Z) - ALSO: Automotive Lidar Self-supervision by Occupancy estimation [70.70557577874155]
We propose a new self-supervised method for pre-training the backbone of deep perception models operating on point clouds.
The core idea is to train the model on a pretext task which is the reconstruction of the surface on which the 3D points are sampled.
The intuition is that if the network is able to reconstruct the scene surface, given only sparse input points, then it probably also captures some fragments of semantic information.
arXiv Detail & Related papers (2022-12-12T13:10:19Z) - Label-Efficient Object Detection via Region Proposal Network
Pre-Training [58.50615557874024]
We propose a simple pretext task that provides an effective pre-training for the region proposal network (RPN)
In comparison with multi-stage detectors without RPN pre-training, our approach is able to consistently improve downstream task performance.
arXiv Detail & Related papers (2022-11-16T16:28:18Z) - CoDo: Contrastive Learning with Downstream Background Invariance for
Detection [10.608660802917214]
We propose a novel object-level self-supervised learning method, called Contrastive learning with Downstream background invariance (CoDo)
The pretext task is converted to focus on instance location modeling for various backgrounds, especially for downstream datasets.
Experiments on MSCOCO demonstrate that the proposed CoDo with common backbones, ResNet50-FPN, yields strong transfer learning results for object detection.
arXiv Detail & Related papers (2022-05-10T01:26:15Z) - UDA-COPE: Unsupervised Domain Adaptation for Category-level Object Pose
Estimation [84.16372642822495]
We propose an unsupervised domain adaptation (UDA) for category-level object pose estimation, called textbfUDA-COPE.
Inspired by the recent multi-modal UDA techniques, the proposed method exploits a teacher-student self-supervised learning scheme to train a pose estimation network without using target domain labels.
arXiv Detail & Related papers (2021-11-24T16:00:48Z) - Instance Localization for Self-supervised Detection Pretraining [68.24102560821623]
We propose a new self-supervised pretext task, called instance localization.
We show that integration of bounding boxes into pretraining promotes better task alignment and architecture alignment for transfer learning.
Experimental results demonstrate that our approach yields state-of-the-art transfer learning results for object detection.
arXiv Detail & Related papers (2021-02-16T17:58:57Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
We introduce a two-stage model consisting of a first stage Matching-FCOS network and a second stage Structure-Aware Relation Module.
We also propose novel training strategies that effectively improve detection performance.
Our method exceeds the state-of-the-art one-shot performance consistently on multiple datasets.
arXiv Detail & Related papers (2020-05-08T01:59:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.