A Globally Normalized Neural Model for Semantic Parsing
- URL: http://arxiv.org/abs/2106.03376v1
- Date: Mon, 7 Jun 2021 07:06:36 GMT
- Title: A Globally Normalized Neural Model for Semantic Parsing
- Authors: Chenyang Huang, Wei Yang, Yanshuai Cao, Osmar Za\"iane, Lili Mou
- Abstract summary: We propose a globally normalized model for context-free grammar (CFG)-based semantic parsing.
Our model predicts a real-valued score at each step and does not suffer from the label bias problem.
- Score: 30.209064474475944
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a globally normalized model for context-free
grammar (CFG)-based semantic parsing. Instead of predicting a probability, our
model predicts a real-valued score at each step and does not suffer from the
label bias problem. Experiments show that our approach outperforms locally
normalized models on small datasets, but it does not yield improvement on a
large dataset.
Related papers
- Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
We propose a novel problem of distilling an unlabeled dataset into a set of small synthetic samples for efficient self-supervised learning (SSL)
We first prove that a gradient of synthetic samples with respect to a SSL objective in naive bilevel optimization is textitbiased due to randomness originating from data augmentations or masking.
We empirically validate the effectiveness of our method on various applications involving transfer learning.
arXiv Detail & Related papers (2023-10-10T10:48:52Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - Generating Data to Mitigate Spurious Correlations in Natural Language
Inference Datasets [27.562256973255728]
Natural language processing models often exploit spurious correlations between task-independent features and labels in datasets to perform well only within the distributions they are trained on.
We propose to tackle this problem by generating a debiased version of a dataset, which can then be used to train a debiased, off-the-shelf model.
Our approach consists of 1) a method for training data generators to generate high-quality, label-consistent data samples; and 2) a filtering mechanism for removing data points that contribute to spurious correlations.
arXiv Detail & Related papers (2022-03-24T09:08:05Z) - Continuously Generalized Ordinal Regression for Linear and Deep Models [41.03778663275373]
Ordinal regression is a classification task where classes have an order and prediction error increases the further the predicted class is from the true class.
We propose a new approach for modeling ordinal data that allows class-specific hyperplane slopes.
Our method significantly outperforms the standard ordinal logistic model over a thorough set of ordinal regression benchmark datasets.
arXiv Detail & Related papers (2022-02-14T19:49:05Z) - General Greedy De-bias Learning [163.65789778416172]
We propose a General Greedy De-bias learning framework (GGD), which greedily trains the biased models and the base model like gradient descent in functional space.
GGD can learn a more robust base model under the settings of both task-specific biased models with prior knowledge and self-ensemble biased model without prior knowledge.
arXiv Detail & Related papers (2021-12-20T14:47:32Z) - Automatically Identifying Semantic Bias in Crowdsourced Natural Language
Inference Datasets [78.6856732729301]
We introduce a model-driven, unsupervised technique to find "bias clusters" in a learned embedding space of hypotheses in NLI datasets.
interventions and additional rounds of labeling can be performed to ameliorate the semantic bias of the hypothesis distribution of a dataset.
arXiv Detail & Related papers (2021-12-16T22:49:01Z) - Debiasing Methods in Natural Language Understanding Make Bias More
Accessible [28.877572447481683]
Recent debiasing methods in natural language understanding (NLU) improve performance on such datasets by pressuring models into making unbiased predictions.
We propose a general probing-based framework that allows for post-hoc interpretation of biases in language models.
We show that, counter-intuitively, the more a language model is pushed towards a debiased regime, the more bias is actually encoded in its inner representations.
arXiv Detail & Related papers (2021-09-09T08:28:22Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
We show that we can compute the exact Bayes error of generative models learned using normalizing flows.
We use our approach to conduct a thorough investigation of state-of-the-art classification models.
arXiv Detail & Related papers (2021-06-07T06:21:20Z) - Regularizing Models via Pointwise Mutual Information for Named Entity
Recognition [17.767466724342064]
We propose a Pointwise Mutual Information (PMI) to enhance generalization ability while outperforming an in-domain performance.
Our approach enables to debias highly correlated word and labels in the benchmark datasets.
For long-named and complex-structure entities, our method can predict these entities through debiasing on conjunction or special characters.
arXiv Detail & Related papers (2021-04-15T05:47:27Z) - Towards Robustifying NLI Models Against Lexical Dataset Biases [94.79704960296108]
This paper explores both data-level and model-level debiasing methods to robustify models against lexical dataset biases.
First, we debias the dataset through data augmentation and enhancement, but show that the model bias cannot be fully removed via this method.
The second approach employs a bag-of-words sub-model to capture the features that are likely to exploit the bias and prevents the original model from learning these biased features.
arXiv Detail & Related papers (2020-05-10T17:56:10Z) - Elastic weight consolidation for better bias inoculation [24.12790037712358]
Elastic weight consolidation (EWC) allows fine-tuning of models to mitigate biases.
EWC dominates standard fine-tuning, yielding models with lower levels of forgetting on the original (biased) dataset.
arXiv Detail & Related papers (2020-04-29T17:45:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.