Decentralized Optimization with Heterogeneous Delays: a Continuous-Time
Approach
- URL: http://arxiv.org/abs/2106.03585v1
- Date: Mon, 7 Jun 2021 13:09:25 GMT
- Title: Decentralized Optimization with Heterogeneous Delays: a Continuous-Time
Approach
- Authors: Mathieu Even, Hadrien Hendrikx, Laurent Massoulie
- Abstract summary: We propose a novel continuous-time framework to analyze asynchronous algorithms.
We describe a fully asynchronous decentralized algorithm to minimize the sum of smooth and strongly convex functions.
- Score: 6.187780920448871
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In decentralized optimization, nodes of a communication network privately
possess a local objective function, and communicate using gossip-based methods
in order to minimize the average of these per-node objectives. While
synchronous algorithms can be heavily slowed down by a few nodes and edges in
the graph (the straggler problem), their asynchronous counterparts lack from a
sharp analysis taking into account heterogeneous delays in the communication
network. In this paper, we propose a novel continuous-time framework to analyze
asynchronous algorithms, which does not require to define a global ordering of
the events, and allows to finely characterize the time complexity in the
presence of (heterogeneous) delays. Using this framework, we describe a fully
asynchronous decentralized algorithm to minimize the sum of smooth and strongly
convex functions. Our algorithm (DCDM, Delayed Coordinate Dual Method), based
on delayed randomized gossip communications and local computational updates,
achieves an asynchronous speed-up: the rate of convergence is tightly
characterized in terms of the eigengap of the graph weighted by local delays
only, instead of the global worst-case delays as in previous analyses.
Related papers
- Decentralized Optimization in Time-Varying Networks with Arbitrary Delays [22.40154714677385]
We consider a decentralized optimization problem for networks affected by communication delays.
Examples of such networks include collaborative machine learning, sensor networks, and multi-agent systems.
To mimic communication delays, we add virtual non-computing nodes to the network, resulting in directed graphs.
arXiv Detail & Related papers (2024-05-29T20:51:38Z) - Lower Bounds and Optimal Algorithms for Non-Smooth Convex Decentralized Optimization over Time-Varying Networks [57.24087627267086]
We consider the task of minimizing the sum of convex functions stored in a decentralized manner across the nodes of a communication network.
Lower bounds on the number of decentralized communications and (sub)gradient computations required to solve the problem have been established.
We develop the first optimal algorithm that matches these lower bounds and offers substantially improved theoretical performance compared to the existing state of the art.
arXiv Detail & Related papers (2024-05-28T10:28:45Z) - DASA: Delay-Adaptive Multi-Agent Stochastic Approximation [64.32538247395627]
We consider a setting in which $N$ agents aim to speedup a common Approximation problem by acting in parallel and communicating with a central server.
To mitigate the effect of delays and stragglers, we propose textttDASA, a Delay-Adaptive algorithm for multi-agent Approximation.
arXiv Detail & Related papers (2024-03-25T22:49:56Z) - Asynchronous Distributed Optimization with Delay-free Parameters [9.062164411594175]
This paper develops asynchronous versions of two distributed algorithms, Prox-DGD and DGD-ATC, for solving consensus optimization problems over undirected networks.
In contrast to alternatives, our algorithms can converge to the fixed point set of their synchronous counterparts using step-sizes that are independent of the delays.
arXiv Detail & Related papers (2023-12-11T16:33:38Z) - Towards Understanding the Generalizability of Delayed Stochastic
Gradient Descent [63.43247232708004]
A gradient descent performed in an asynchronous manner plays a crucial role in training large-scale machine learning models.
Existing generalization error bounds are rather pessimistic and cannot reveal the correlation between asynchronous delays and generalization.
Our theoretical results indicate that asynchronous delays reduce the generalization error of the delayed SGD algorithm.
arXiv Detail & Related papers (2023-08-18T10:00:27Z) - Locally Asynchronous Stochastic Gradient Descent for Decentralised Deep
Learning [0.0]
Local Asynchronous SGD (LASGD) is an asynchronous decentralized algorithm that relies on All Reduce for model synchronization.
We empirically validate LASGD's performance on image classification tasks on the ImageNet dataset.
arXiv Detail & Related papers (2022-03-24T14:25:15Z) - Acceleration in Distributed Optimization Under Similarity [72.54787082152278]
We study distributed (strongly convex) optimization problems over a network of agents, with no centralized nodes.
An $varepsilon$-solution is achieved in $tildemathcalrhoObig(sqrtfracbeta/mu (1-)log1/varepsilonbig)$ number of communications steps.
This rate matches (up to poly-log factors) for the first time lower complexity communication bounds of distributed gossip-algorithms applied to the class of problems of interest.
arXiv Detail & Related papers (2021-10-24T04:03:00Z) - DESTRESS: Computation-Optimal and Communication-Efficient Decentralized
Nonconvex Finite-Sum Optimization [43.31016937305845]
Internet-of-things, networked sensing, autonomous systems and federated learning call for decentralized algorithms for finite-sum optimizations.
We develop DEcentralized STochastic REcurSive methodDESTRESS for non finite-sum optimization.
Detailed theoretical and numerical comparisons show that DESTRESS improves upon prior decentralized algorithms.
arXiv Detail & Related papers (2021-10-04T03:17:41Z) - Distributed stochastic optimization with large delays [59.95552973784946]
One of the most widely used methods for solving large-scale optimization problems is distributed asynchronous gradient descent (DASGD)
We show that DASGD converges to a global optimal implementation model under same delay assumptions.
arXiv Detail & Related papers (2021-07-06T21:59:49Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
We consider the task of minimizing the sum of smooth and strongly convex functions stored in a decentralized manner across the nodes of a communication network.
We design two optimal algorithms that attain these lower bounds.
We corroborate the theoretical efficiency of these algorithms by performing an experimental comparison with existing state-of-the-art methods.
arXiv Detail & Related papers (2021-06-08T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.