Programmable Interactions and Emergent Geometry in an Atomic Array
- URL: http://arxiv.org/abs/2106.04070v1
- Date: Tue, 8 Jun 2021 03:00:49 GMT
- Title: Programmable Interactions and Emergent Geometry in an Atomic Array
- Authors: Avikar Periwal, Eric S. Cooper, Philipp Kunkel, Julian F. Wienand,
Emily J. Davis, Monika Schleier-Smith
- Abstract summary: Nonlocal interactions govern the flow of information and the formation of correlations in quantum systems.
We report on the realization of programmable nonlocal interactions in an array of atomic ensembles within an optical cavity.
Our work opens broader prospects for simulating frustrated magnets and topological phases, investigating quantum optimization algorithms, and engineering new entangled resource states for sensing and computation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interactions govern the flow of information and the formation of correlations
in quantum systems, dictating the phases of matter found in nature and the
forms of entanglement generated in the laboratory. Typical interactions decay
with distance and thus produce a network of connectivity governed by geometry,
e.g., by the crystalline structure of a material or the trapping sites of atoms
in a quantum simulator. However, many envisioned applications in quantum
simulation and computation require richer coupling graphs including nonlocal
interactions, which notably feature in mappings of hard optimization problems
onto frustrated spin systems and in models of information scrambling in black
holes. Here, we report on the realization of programmable nonlocal interactions
in an array of atomic ensembles within an optical cavity, where photons carry
information between distant atomic spins. By programming the
distance-dependence of interactions, we access effective geometries where the
dimensionality, topology, and metric are entirely distinct from the physical
arrangement of atoms. As examples, we engineer an antiferromagnetic triangular
ladder, a Moebius strip with sign-changing interactions, and a treelike
geometry inspired by concepts of quantum gravity. The tree graph constitutes a
toy model of holographic duality, where the quantum system may be viewed as
lying on the boundary of a higher-dimensional geometry that emerges from
measured spin correlations. Our work opens broader prospects for simulating
frustrated magnets and topological phases, investigating quantum optimization
algorithms, and engineering new entangled resource states for sensing and
computation.
Related papers
- Inverse Hamiltonian design of highly-entangled quantum systems [0.0]
We apply an inverse design framework using automatic differentiation to quantum spin systems.
We show that the method automatically finds the Kitaev model with bond-dependent anisotropic interactions.
The comparative study reveals that bond-dependent anisotropic interactions, rather than isotropic Heisenberg interactions, amplify quantum entanglement.
arXiv Detail & Related papers (2024-02-24T12:33:50Z) - Realization of programmable Ising models in a trapped-ion quantum
simulator [12.463019796364186]
We present a programmable trapped-ion quantum simulator of an Ising model with all-to-all connectivity with up to four spins.
We implement the spin-spin interactions by using the coupling of trapped ions to multiple collective motional modes.
We confirm the programmed interaction geometry by observing the ground states of the corresponding models through quantum state tomography.
arXiv Detail & Related papers (2023-11-08T18:02:47Z) - Qubits on programmable geometries with a trapped-ion quantum processor [2.0295982805787776]
We develop a class of high-dimensional Ising interactions using a linear one-dimensional (1D) ion chain with up to 8 qubits through stroboscopic sequences of commuting Hamiltonians.
We extend this method to non-commuting circuits and demonstrate the quantum XY and Heisenberg models using Floquet periodic drives with tunable symmetries.
arXiv Detail & Related papers (2023-08-20T07:01:57Z) - Complementarity between quantum entanglement, geometrical and dynamical appearances in N spin-$1/2$ system under all-range Ising model [0.0]
Modern geometry studies the interrelations between elements such as distance and curvature.
We explore these structures in a physical system of $N$ interaction spin-$1/2$ under all-range Ising model.
arXiv Detail & Related papers (2023-04-11T15:26:19Z) - Molecular Geometry-aware Transformer for accurate 3D Atomic System
modeling [51.83761266429285]
We propose a novel Transformer architecture that takes nodes (atoms) and edges (bonds and nonbonding atom pairs) as inputs and models the interactions among them.
Moleformer achieves state-of-the-art on the initial state to relaxed energy prediction of OC20 and is very competitive in QM9 on predicting quantum chemical properties.
arXiv Detail & Related papers (2023-02-02T03:49:57Z) - Geometrical, topological and dynamical description of $\mathcal{N}$
interacting spin-$\mathtt{s}$ under long-range Ising model and their
interplay with quantum entanglement [0.0]
This work investigates the connections between integrable quantum systems with quantum phenomena exploitable in quantum information tasks.
We find the relevant dynamics, identify the corresponding quantum phase space and derive the associated Fubini-Study metric.
By narrowing the system to a two spin-$mathtts$ system, we explore the relevant entanglement from two different perspectives.
arXiv Detail & Related papers (2022-10-29T11:53:14Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Exploring complex graphs using three-dimensional quantum walks of
correlated photons [52.77024349608834]
We introduce a new paradigm for the direct experimental realization of excitation dynamics associated with three-dimensional networks.
This novel testbed for the experimental exploration of multi-particle quantum walks on complex, highly connected graphs paves the way towards exploiting the applicative potential of fermionic dynamics in integrated quantum photonics.
arXiv Detail & Related papers (2020-07-10T09:15:44Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.