Launchpad: A Programming Model for Distributed Machine Learning Research
- URL: http://arxiv.org/abs/2106.04516v1
- Date: Mon, 7 Jun 2021 17:02:10 GMT
- Title: Launchpad: A Programming Model for Distributed Machine Learning Research
- Authors: Fan Yang, Gabriel Barth-Maron, Piotr Sta\'nczyk, Matthew Hoffman, Siqi
Liu, Manuel Kroiss, Aedan Pope, Alban Rrustemi
- Abstract summary: We introduce Launchpad, a programming model that simplifies the process of defining and launching distributed systems.
We describe our framework, its design philosophy and implementation, and give a number of examples of common learning algorithms whose designs are greatly simplified by this approach.
- Score: 12.618286123360233
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A major driver behind the success of modern machine learning algorithms has
been their ability to process ever-larger amounts of data. As a result, the use
of distributed systems in both research and production has become increasingly
prevalent as a means to scale to this growing data. At the same time, however,
distributing the learning process can drastically complicate the implementation
of even simple algorithms. This is especially problematic as many machine
learning practitioners are not well-versed in the design of distributed
systems, let alone those that have complicated communication topologies. In
this work we introduce Launchpad, a programming model that simplifies the
process of defining and launching distributed systems that is specifically
tailored towards a machine learning audience. We describe our framework, its
design philosophy and implementation, and give a number of examples of common
learning algorithms whose designs are greatly simplified by this approach.
Related papers
- Application-Driven Innovation in Machine Learning [56.85396167616353]
We describe the paradigm of application-driven research in machine learning.
We show how this approach can productively synergize with methods-driven work.
Despite these benefits, we find that reviewing, hiring, and teaching practices in machine learning often hold back application-driven innovation.
arXiv Detail & Related papers (2024-03-26T04:59:27Z) - A Survey From Distributed Machine Learning to Distributed Deep Learning [0.356008609689971]
Distributed machine learning has been proposed, which involves distributing the data and algorithm across several machines.
We divide these algorithms in classification and clustering (traditional machine learning), deep learning and deep reinforcement learning groups.
Based on the investigation of the mentioned algorithms, we highlighted the limitations that should be addressed in future research.
arXiv Detail & Related papers (2023-07-11T13:06:42Z) - Automating In-Network Machine Learning [2.857025628729502]
Planter is an open-source framework for mapping trained machine learning models to programmable devices.
We show that Planter-based in-network machine learning algorithms can run at line rate, have a negligible effect on latency, coexist with standard switching functionality, and have no or minor accuracy trade-offs.
arXiv Detail & Related papers (2022-05-18T09:42:22Z) - Flashlight: Enabling Innovation in Tools for Machine Learning [50.63188263773778]
We introduce Flashlight, an open-source library built to spur innovation in machine learning tools and systems.
We see Flashlight as a tool enabling research that can benefit widely used libraries downstream and bring machine learning and systems researchers closer together.
arXiv Detail & Related papers (2022-01-29T01:03:29Z) - Continual Learning for Real-World Autonomous Systems: Algorithms,
Challenges and Frameworks [15.276951055528237]
We review the state-of-the-art methods that allow continuous learning of computational models over time.
We focus on the learning algorithms that perform continuous learning in an online fashion from considerably large (or infinite) sequential data.
We critically analyze the key challenges associated with continual learning for autonomous real-world systems.
arXiv Detail & Related papers (2021-05-26T07:38:20Z) - SELM: Software Engineering of Machine Learning Models [0.19116784879310023]
In this article, we present a SELM framework for Software Engineering of machine Learning Models.
Using the SELM framework, we can improve a machine learning process efficiency and provide more accuracy in learning.
This issue highlights the importance of an interdisciplinary approach to machine learning.
arXiv Detail & Related papers (2021-03-20T21:43:24Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
Development and deployment of machine learning systems can be executed easily with modern tools, but the process is typically rushed and means-to-an-end.
We have developed a proven systems engineering approach for machine learning development and deployment.
Our "Machine Learning Technology Readiness Levels" framework defines a principled process to ensure robust, reliable, and responsible systems.
arXiv Detail & Related papers (2021-01-11T15:54:48Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Self-organizing Democratized Learning: Towards Large-scale Distributed
Learning Systems [71.14339738190202]
democratized learning (Dem-AI) lays out a holistic philosophy with underlying principles for building large-scale distributed and democratized machine learning systems.
Inspired by Dem-AI philosophy, a novel distributed learning approach is proposed in this paper.
The proposed algorithms demonstrate better results in the generalization performance of learning models in agents compared to the conventional FL algorithms.
arXiv Detail & Related papers (2020-07-07T08:34:48Z) - AutoML-Zero: Evolving Machine Learning Algorithms From Scratch [76.83052807776276]
We show that it is possible to automatically discover complete machine learning algorithms just using basic mathematical operations as building blocks.
We demonstrate this by introducing a novel framework that significantly reduces human bias through a generic search space.
We believe these preliminary successes in discovering machine learning algorithms from scratch indicate a promising new direction in the field.
arXiv Detail & Related papers (2020-03-06T19:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.