Neural Extractive Search
- URL: http://arxiv.org/abs/2106.04612v1
- Date: Tue, 8 Jun 2021 18:03:31 GMT
- Title: Neural Extractive Search
- Authors: Shauli Ravfogel, Hillel Taub-Tabib, Yoav Goldberg
- Abstract summary: Domain experts often need to extract structured information from large corpora.
We advocate for a search paradigm called extractive search'', in which a search query is enriched with capture-slots.
We show how the recall can be improved using neural retrieval and alignment.
- Score: 53.15076679818303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Domain experts often need to extract structured information from large
corpora. We advocate for a search paradigm called ``extractive search'', in
which a search query is enriched with capture-slots, to allow for such rapid
extraction. Such an extractive search system can be built around syntactic
structures, resulting in high-precision, low-recall results. We show how the
recall can be improved using neural retrieval and alignment. The goals of this
paper are to concisely introduce the extractive-search paradigm; and to
demonstrate a prototype neural retrieval system for extractive search and its
benefits and potential. Our prototype is available at
\url{https://spike.neural-sim.apps.allenai.org/} and a video demonstration is
available at \url{https://vimeo.com/559586687}.
Related papers
- Dense X Retrieval: What Retrieval Granularity Should We Use? [56.90827473115201]
Often-overlooked design choice is the retrieval unit in which the corpus is indexed, e.g. document, passage, or sentence.
We introduce a novel retrieval unit, proposition, for dense retrieval.
Experiments reveal that indexing a corpus by fine-grained units such as propositions significantly outperforms passage-level units in retrieval tasks.
arXiv Detail & Related papers (2023-12-11T18:57:35Z) - End-to-End Open Vocabulary Keyword Search With Multilingual Neural
Representations [7.780766187171571]
We propose a neural ASR-free keyword search model which achieves competitive performance.
We extend this work with multilingual pretraining and detailed analysis of the model.
Our experiments show that the proposed multilingual training significantly improves the model performance.
arXiv Detail & Related papers (2023-08-15T20:33:25Z) - CorpusBrain: Pre-train a Generative Retrieval Model for
Knowledge-Intensive Language Tasks [62.22920673080208]
Single-step generative model can dramatically simplify the search process and be optimized in end-to-end manner.
We name the pre-trained generative retrieval model as CorpusBrain as all information about the corpus is encoded in its parameters without the need of constructing additional index.
arXiv Detail & Related papers (2022-08-16T10:22:49Z) - RF-Next: Efficient Receptive Field Search for Convolutional Neural
Networks [86.6139619721343]
We propose to find better receptive field combinations through a global-to-local search scheme.
Our search scheme exploits both global search to find the coarse combinations and local search to get the refined receptive field combinations.
Our RF-Next models, plugging receptive field search to various models, boost the performance on many tasks.
arXiv Detail & Related papers (2022-06-14T06:56:26Z) - CrossBeam: Learning to Search in Bottom-Up Program Synthesis [51.37514793318815]
We propose training a neural model to learn a hands-on search policy for bottom-up synthesis.
Our approach, called CrossBeam, uses the neural model to choose how to combine previously-explored programs into new programs.
We observe that CrossBeam learns to search efficiently, exploring much smaller portions of the program space compared to the state-of-the-art.
arXiv Detail & Related papers (2022-03-20T04:41:05Z) - Deep Reinforcement Agent for Efficient Instant Search [14.086339486783018]
We propose to address the load issue by identifying tokens that are semantically more salient towards retrieving relevant documents.
We train a reinforcement agent that interacts directly with the search engine and learns to predict the word's importance.
A novel evaluation framework is presented to study the trade-off between the number of triggered searches and the system's performance.
arXiv Detail & Related papers (2022-03-17T22:47:15Z) - Boosting Search Engines with Interactive Agents [25.89284695491093]
This paper presents first steps in designing agents that learn meta-strategies for contextual query refinements.
Agents are empowered with simple but effective search operators to exert fine-grained and transparent control over queries and search results.
arXiv Detail & Related papers (2021-09-01T13:11:57Z) - Neural Architecture Search For Keyword Spotting [18.253449041632166]
We apply neural architecture search to search for convolutional neural network models.
We achieve a state-of-the-art accuracy of over 97% on the setting of 12-class utterance classification.
arXiv Detail & Related papers (2020-09-01T01:11:41Z) - AutoSTR: Efficient Backbone Search for Scene Text Recognition [80.7290173000068]
Scene text recognition (STR) is very challenging due to the diversity of text instances and the complexity of scenes.
We propose automated STR (AutoSTR) to search data-dependent backbones to boost text recognition performance.
Experiments demonstrate that, by searching data-dependent backbones, AutoSTR can outperform the state-of-the-art approaches on standard benchmarks.
arXiv Detail & Related papers (2020-03-14T06:51:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.