Practical Machine Learning Safety: A Survey and Primer
- URL: http://arxiv.org/abs/2106.04823v1
- Date: Wed, 9 Jun 2021 05:56:42 GMT
- Title: Practical Machine Learning Safety: A Survey and Primer
- Authors: Sina Mohseni and Haotao Wang and Zhiding Yu and Chaowei Xiao and
Zhangyang Wang and Jay Yadawa
- Abstract summary: Open-world deployment of Machine Learning algorithms in safety-critical applications such as autonomous vehicles needs to address a variety of ML vulnerabilities.
New models and training techniques to reduce generalization error, achieve domain adaptation, and detect outlier examples and adversarial attacks.
Our organization maps state-of-the-art ML techniques to safety strategies in order to enhance the dependability of the ML algorithm from different aspects.
- Score: 81.73857913779534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The open-world deployment of Machine Learning (ML) algorithms in
safety-critical applications such as autonomous vehicles needs to address a
variety of ML vulnerabilities such as interpretability, verifiability, and
performance limitations. Research explores different approaches to improve ML
dependability by proposing new models and training techniques to reduce
generalization error, achieve domain adaptation, and detect outlier examples
and adversarial attacks. In this paper, we review and organize practical ML
techniques that can improve the safety and dependability of ML algorithms and
therefore ML-based software. Our organization maps state-of-the-art ML
techniques to safety strategies in order to enhance the dependability of the ML
algorithm from different aspects, and discuss research gaps as well as
promising solutions.
Related papers
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
Large language models (LLMs) remain under-studied in scenarios requiring optimal decision-making under uncertainty.
We measure LLMs' (in)ability to make optimal decisions in bandits, a state-less reinforcement learning setting relevant to many applications.
Motivated by the existence of optimal exploration algorithms, we propose efficient ways to integrate this algorithmic knowledge into LLMs.
arXiv Detail & Related papers (2024-10-08T17:54:03Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Enhancing ML-Based DoS Attack Detection Through Combinatorial Fusion
Analysis [2.7973964073307265]
Mitigating Denial-of-Service (DoS) attacks is vital for online service security and availability.
We suggest an innovative method, fusion, which combines multiple ML models using advanced algorithms.
Our findings emphasize the potential of this approach to improve DoS attack detection and contribute to stronger defense mechanisms.
arXiv Detail & Related papers (2023-10-02T02:21:48Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
Machine learning (ML) sees an increasing prevalence of being used in the internet-of-things (IoT)-based smart grid.
adversarial distortion injected into the power signal will greatly affect the system's normal control and operation.
It is imperative to conduct vulnerability assessment for MLsgAPPs applied in the context of safety-critical power systems.
arXiv Detail & Related papers (2023-08-30T03:29:26Z) - Adversarial Machine Learning Threat Analysis in Open Radio Access
Networks [37.23982660941893]
The Open Radio Access Network (O-RAN) is a new, open, adaptive, and intelligent RAN architecture.
In this paper, we present a systematic adversarial machine learning threat analysis for the O-RAN.
arXiv Detail & Related papers (2022-01-16T17:01:38Z) - Learning by Design: Structuring and Documenting the Human Choices in
Machine Learning Development [6.903929927172917]
We present a method consisting of eight design questions that outline the deliberation and normative choices going into creating a machine learning model.
Our method affords several benefits, such as supporting critical assessment through methodological transparency.
We believe that our method can help ML practitioners structure and justify their choices and assumptions when developing ML models.
arXiv Detail & Related papers (2021-05-03T08:47:45Z) - Inspect, Understand, Overcome: A Survey of Practical Methods for AI
Safety [54.478842696269304]
The use of deep neural networks (DNNs) in safety-critical applications is challenging due to numerous model-inherent shortcomings.
In recent years, a zoo of state-of-the-art techniques aiming to address these safety concerns has emerged.
Our paper addresses both machine learning experts and safety engineers.
arXiv Detail & Related papers (2021-04-29T09:54:54Z) - Stress Testing of Meta-learning Approaches for Few-shot Learning [2.733700237741334]
Meta-learning (ML) has emerged as a promising learning method under resource constraints such as few-shot learning.
We measure the performance of ML approaches for few-shot learning against increasing task complexity.
arXiv Detail & Related papers (2021-01-21T13:00:10Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.