Offline Inverse Reinforcement Learning
- URL: http://arxiv.org/abs/2106.05068v1
- Date: Wed, 9 Jun 2021 13:44:06 GMT
- Title: Offline Inverse Reinforcement Learning
- Authors: Firas Jarboui, Vianney Perchet
- Abstract summary: offline RL is to learn optimal policies when a fixed exploratory demonstrations data-set is available.
Inspired by the success of IRL techniques in achieving state of the art imitation performances in online settings, we exploit GAN based data augmentation procedures to construct the first offline IRL algorithm.
- Score: 24.316047317028147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective of offline RL is to learn optimal policies when a fixed
exploratory demonstrations data-set is available and sampling additional
observations is impossible (typically if this operation is either costly or
rises ethical questions). In order to solve this problem, off the shelf
approaches require a properly defined cost function (or its evaluation on the
provided data-set), which are seldom available in practice. To circumvent this
issue, a reasonable alternative is to query an expert for few optimal
demonstrations in addition to the exploratory data-set. The objective is then
to learn an optimal policy w.r.t. the expert's latent cost function. Current
solutions either solve a behaviour cloning problem (which does not leverage the
exploratory data) or a reinforced imitation learning problem (using a fixed
cost function that discriminates available exploratory trajectories from expert
ones). Inspired by the success of IRL techniques in achieving state of the art
imitation performances in online settings, we exploit GAN based data
augmentation procedures to construct the first offline IRL algorithm. The
obtained policies outperformed the aforementioned solutions on multiple OpenAI
gym environments.
Related papers
- How to Leverage Diverse Demonstrations in Offline Imitation Learning [39.24627312800116]
Offline Imitation Learning (IL) with imperfect demonstrations has garnered increasing attention owing to the scarcity of expert data.
We introduce a simple yet effective data selection method that identifies positive behaviors based on their resultant states.
We then devise a lightweight behavior cloning algorithm capable of leveraging the expert and selected data correctly.
arXiv Detail & Related papers (2024-05-24T04:56:39Z) - Adversarial Imitation Learning On Aggregated Data [0.0]
Inverse Reinforcement Learning (IRL) learns an optimal policy, given some expert demonstrations, thus avoiding the need for the tedious process of specifying a suitable reward function.
We propose an approach which removes these requirements through a dynamic, adaptive method called Adversarial Imitation Learning on Aggregated Data (AILAD)
It learns conjointly both a non linear reward function and the associated optimal policy using an adversarial framework.
arXiv Detail & Related papers (2023-11-14T22:13:38Z) - Query-Dependent Prompt Evaluation and Optimization with Offline Inverse
RL [62.824464372594576]
We aim to enhance arithmetic reasoning ability of Large Language Models (LLMs) through zero-shot prompt optimization.
We identify a previously overlooked objective of query dependency in such optimization.
We introduce Prompt-OIRL, which harnesses offline inverse reinforcement learning to draw insights from offline prompting demonstration data.
arXiv Detail & Related papers (2023-09-13T01:12:52Z) - Efficient Online Reinforcement Learning with Offline Data [78.92501185886569]
We show that we can simply apply existing off-policy methods to leverage offline data when learning online.
We extensively ablate these design choices, demonstrating the key factors that most affect performance.
We see that correct application of these simple recommendations can provide a $mathbf2.5times$ improvement over existing approaches.
arXiv Detail & Related papers (2023-02-06T17:30:22Z) - Discriminator-Weighted Offline Imitation Learning from Suboptimal
Demonstrations [5.760034336327491]
We study the problem of offline Learning (IL) where an agent aims to learn an optimal expert behavior policy without additional online environment interactions.
We introduce an additional discriminator to distinguish expert and non-expert data.
Our proposed algorithm achieves higher returns and faster training speed compared to baseline algorithms.
arXiv Detail & Related papers (2022-07-20T17:29:04Z) - When Should We Prefer Offline Reinforcement Learning Over Behavioral
Cloning? [86.43517734716606]
offline reinforcement learning (RL) algorithms can acquire effective policies by utilizing previously collected experience, without any online interaction.
behavioral cloning (BC) algorithms mimic a subset of the dataset via supervised learning.
We show that policies trained on sufficiently noisy suboptimal data can attain better performance than even BC algorithms with expert data.
arXiv Detail & Related papers (2022-04-12T08:25:34Z) - Jump-Start Reinforcement Learning [68.82380421479675]
We present a meta algorithm that can use offline data, demonstrations, or a pre-existing policy to initialize an RL policy.
In particular, we propose Jump-Start Reinforcement Learning (JSRL), an algorithm that employs two policies to solve tasks.
We show via experiments that JSRL is able to significantly outperform existing imitation and reinforcement learning algorithms.
arXiv Detail & Related papers (2022-04-05T17:25:22Z) - Reinforcement Learning with Sparse Rewards using Guidance from Offline
Demonstration [9.017416068706579]
A major challenge in real-world reinforcement learning (RL) is the sparsity of reward feedback.
We develop an algorithm that exploits the offline demonstration data generated by a sub-optimal behavior policy.
We demonstrate the superior performance of our algorithm over state-of-the-art approaches.
arXiv Detail & Related papers (2022-02-09T18:45:40Z) - An Experimental Design Perspective on Model-Based Reinforcement Learning [73.37942845983417]
In practical applications of RL, it is expensive to observe state transitions from the environment.
We propose an acquisition function that quantifies how much information a state-action pair would provide about the optimal solution to a Markov decision process.
arXiv Detail & Related papers (2021-12-09T23:13:57Z) - Online Apprenticeship Learning [58.45089581278177]
In Apprenticeship Learning (AL), we are given a Markov Decision Process (MDP) without access to the cost function.
The goal is to find a policy that matches the expert's performance on some predefined set of cost functions.
We show that the OAL problem can be effectively solved by combining two mirror descent based no-regret algorithms.
arXiv Detail & Related papers (2021-02-13T12:57:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.