Realizing GANs via a Tunable Loss Function
- URL: http://arxiv.org/abs/2106.05232v1
- Date: Wed, 9 Jun 2021 17:18:21 GMT
- Title: Realizing GANs via a Tunable Loss Function
- Authors: Gowtham R. Kurri, Tyler Sypherd, and Lalitha Sankar
- Abstract summary: We introduce a tunable GAN, called $alpha$-GAN, parameterized by $alpha in (0,infty]$.
We show that $alpha$-GAN is intimately related to the Arimoto divergence.
- Score: 7.455546102930911
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a tunable GAN, called $\alpha$-GAN, parameterized by $\alpha \in
(0,\infty]$, which interpolates between various $f$-GANs and Integral
Probability Metric based GANs (under constrained discriminator set). We
construct $\alpha$-GAN using a supervised loss function, namely, $\alpha$-loss,
which is a tunable loss function capturing several canonical losses. We show
that $\alpha$-GAN is intimately related to the Arimoto divergence, which was
first proposed by \"{O}sterriecher (1996), and later studied by Liese and Vajda
(2006). We posit that the holistic understanding that $\alpha$-GAN introduces
will have practical benefits of addressing both the issues of vanishing
gradients and mode collapse.
Related papers
- Addressing GAN Training Instabilities via Tunable Classification Losses [8.151943266391493]
Generative adversarial networks (GANs) allow generating synthetic data with formal guarantees.
We show that all symmetric $f$-divergences are equivalent in convergence.
We also highlight the value of tuning $(alpha_D,alpha_G)$ in alleviating training instabilities for the synthetic 2D Gaussian mixture ring.
arXiv Detail & Related papers (2023-10-27T17:29:07Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - A Unifying Generator Loss Function for Generative Adversarial Networks [5.5575224613422725]
A unifying $alpha$-parametrized generator loss function is introduced for a dual-objective generative adversarial network (GAN)
The generator loss function is based on a symmetric class probability estimation type function, $mathcalL_alpha$, and the resulting GAN system is termed $mathcalL_alpha$-GAN.
arXiv Detail & Related papers (2023-08-14T16:16:31Z) - Universal Online Learning with Gradient Variations: A Multi-layer Online Ensemble Approach [57.92727189589498]
We propose an online convex optimization approach with two different levels of adaptivity.
We obtain $mathcalO(log V_T)$, $mathcalO(d log V_T)$ and $hatmathcalO(sqrtV_T)$ regret bounds for strongly convex, exp-concave and convex loss functions.
arXiv Detail & Related papers (2023-07-17T09:55:35Z) - $(\alpha_D,\alpha_G)$-GANs: Addressing GAN Training Instabilities via
Dual Objectives [7.493779672689531]
We introduce a class of dual-objective GANs with different value functions (objectives) for the generator (G) and discriminator (D)
We show that the resulting non-zero sum game simplifies to minimize an $f$-divergence under appropriate conditions on $(alpha_D,alpha_G)$.
We highlight the value of tuning $(alpha_D,alpha_G)$ in alleviating training instabilities for the synthetic 2D Gaussian mixture ring and the Stacked MNIST datasets.
arXiv Detail & Related papers (2023-02-28T05:22:54Z) - Horizon-Free and Variance-Dependent Reinforcement Learning for Latent
Markov Decision Processes [62.90204655228324]
We study regret minimization for reinforcement learning (RL) in Latent Markov Decision Processes (LMDPs) with context in hindsight.
We design a novel model-based algorithmic framework which can be instantiated with both a model-optimistic and a value-optimistic solver.
arXiv Detail & Related papers (2022-10-20T21:32:01Z) - $\alpha$-GAN: Convergence and Estimation Guarantees [7.493779672689531]
We prove a correspondence between the min-max optimization of general CPE loss function GANs and the minimization of associated $f$-divergences.
We then focus on $alpha$-GAN, defined via the $alpha$-loss, which interpolates several GANs and corresponds to the minimization of the Arimoto divergence.
arXiv Detail & Related papers (2022-05-12T23:26:51Z) - High Probability Bounds for a Class of Nonconvex Algorithms with AdaGrad
Stepsize [55.0090961425708]
We propose a new, simplified high probability analysis of AdaGrad for smooth, non- probability problems.
We present our analysis in a modular way and obtain a complementary $mathcal O (1 / TT)$ convergence rate in the deterministic setting.
To the best of our knowledge, this is the first high probability for AdaGrad with a truly adaptive scheme, i.e., completely oblivious to the knowledge of smoothness.
arXiv Detail & Related papers (2022-04-06T13:50:33Z) - A Law of Robustness beyond Isoperimetry [84.33752026418045]
We prove a Lipschitzness lower bound $Omega(sqrtn/p)$ of robustness of interpolating neural network parameters on arbitrary distributions.
We then show the potential benefit of overparametrization for smooth data when $n=mathrmpoly(d)$.
We disprove the potential existence of an $O(1)$-Lipschitz robust interpolating function when $n=exp(omega(d))$.
arXiv Detail & Related papers (2022-02-23T16:10:23Z) - Least $k$th-Order and R\'{e}nyi Generative Adversarial Networks [12.13405065406781]
Experimental results indicate that the proposed loss functions, applied to the MNIST and CelebA datasets, confer performance benefits by virtue of the extra degrees of freedom provided by the parameters $k$ and $alpha$, respectively.
While it was applied to GANs in this study, the proposed approach is generic and can be used in other applications of information theory to deep learning, e.g., the issues of fairness or privacy in artificial intelligence.
arXiv Detail & Related papers (2020-06-03T18:44:05Z) - Complexity of Finding Stationary Points of Nonsmooth Nonconvex Functions [84.49087114959872]
We provide the first non-asymptotic analysis for finding stationary points of nonsmooth, nonsmooth functions.
In particular, we study Hadamard semi-differentiable functions, perhaps the largest class of nonsmooth functions.
arXiv Detail & Related papers (2020-02-10T23:23:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.