Reinforcement Learning for Industrial Control Network Cyber Security
Orchestration
- URL: http://arxiv.org/abs/2106.05332v1
- Date: Wed, 9 Jun 2021 18:44:17 GMT
- Title: Reinforcement Learning for Industrial Control Network Cyber Security
Orchestration
- Authors: John Mern, Kyle Hatch, Ryan Silva, Jeff Brush, Mykel J. Kochenderfer
- Abstract summary: We present techniques to scale deep reinforcement learning to solve the cyber security orchestration problem for large industrial control networks.
We propose a novel attention-based neural architecture with size complexity that is invariant to the size of the network under protection.
- Score: 27.781221210925498
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Defending computer networks from cyber attack requires coordinating actions
across multiple nodes based on imperfect indicators of compromise while
minimizing disruptions to network operations. Advanced attacks can progress
with few observable signals over several months before execution. The resulting
sequential decision problem has large observation and action spaces and a long
time-horizon, making it difficult to solve with existing methods. In this work,
we present techniques to scale deep reinforcement learning to solve the cyber
security orchestration problem for large industrial control networks. We
propose a novel attention-based neural architecture with size complexity that
is invariant to the size of the network under protection. A pre-training
curriculum is presented to overcome early exploration difficulty. Experiments
show in that the proposed approaches greatly improve both the learning sample
complexity and converged policy performance over baseline methods in
simulation.
Related papers
- Multi-agent Reinforcement Learning-based Network Intrusion Detection System [3.4636217357968904]
Intrusion Detection Systems (IDS) play a crucial role in ensuring the security of computer networks.
We propose a novel multi-agent reinforcement learning (RL) architecture, enabling automatic, efficient, and robust network intrusion detection.
Our solution introduces a resilient architecture designed to accommodate the addition of new attacks and effectively adapt to changes in existing attack patterns.
arXiv Detail & Related papers (2024-07-08T09:18:59Z) - An Approach to Abstract Multi-stage Cyberattack Data Generation for ML-Based IDS in Smart Grids [2.5655761752240505]
We propose a method to generate synthetic data using a graph-based approach for training machine learning models in smart grids.
We use an abstract form of multi-stage cyberattacks defined via graph formulations and simulate the propagation behavior of attacks in the network.
arXiv Detail & Related papers (2023-12-21T11:07:51Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
Adrial attacks and defenses in machine learning and deep neural network have been gaining significant attention.
This survey provides a comprehensive overview of the recent advancements in the field of adversarial attack and defense techniques.
New avenues of attack are also explored, including search-based, decision-based, drop-based, and physical-world attacks.
arXiv Detail & Related papers (2023-03-11T04:19:31Z) - Graph Neural Networks for Decentralized Multi-Agent Perimeter Defense [111.9039128130633]
We develop an imitation learning framework that learns a mapping from defenders' local perceptions and their communication graph to their actions.
We run perimeter defense games in scenarios with different team sizes and configurations to demonstrate the performance of the learned network.
arXiv Detail & Related papers (2023-01-23T19:35:59Z) - Dynamic Network Reconfiguration for Entropy Maximization using Deep
Reinforcement Learning [3.012947865628207]
Key problem in network theory is how to reconfigure a graph in order to optimize a quantifiable objective.
In this paper, we cast the problem of network rewiring for optimizing a specified structural property as a Markov Decision Process (MDP)
We then propose a general approach based on the Deep Q-Network (DQN) algorithm and graph neural networks (GNNs) that can efficiently learn strategies for rewiring networks.
arXiv Detail & Related papers (2022-05-26T18:44:22Z) - Autonomous Attack Mitigation for Industrial Control Systems [25.894883701063055]
Defending computer networks from cyber attack requires timely responses to alerts and threat intelligence.
We present a deep reinforcement learning approach to autonomous response and recovery in large industrial control networks.
arXiv Detail & Related papers (2021-11-03T18:08:06Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
This paper presents a lightweight monitoring architecture based on coverage paradigms to enhance the model against different unsafe inputs.
Experimental results show that the proposed approach is effective in detecting both powerful adversarial examples and out-of-distribution inputs.
arXiv Detail & Related papers (2021-01-28T16:38:26Z) - Unsupervised Monocular Depth Learning with Integrated Intrinsics and
Spatio-Temporal Constraints [61.46323213702369]
This work presents an unsupervised learning framework that is able to predict at-scale depth maps and egomotion.
Our results demonstrate strong performance when compared to the current state-of-the-art on multiple sequences of the KITTI driving dataset.
arXiv Detail & Related papers (2020-11-02T22:26:58Z) - Hardware Accelerator for Adversarial Attacks on Deep Learning Neural
Networks [7.20382137043754]
A class of adversarial attack network algorithms has been proposed to generate robust physical perturbations.
In this paper, we propose the first hardware accelerator for adversarial attacks based on memristor crossbar arrays.
arXiv Detail & Related papers (2020-08-03T21:55:41Z) - Binary Neural Networks: A Survey [126.67799882857656]
The binary neural network serves as a promising technique for deploying deep models on resource-limited devices.
The binarization inevitably causes severe information loss, and even worse, its discontinuity brings difficulty to the optimization of the deep network.
We present a survey of these algorithms, mainly categorized into the native solutions directly conducting binarization, and the optimized ones using techniques like minimizing the quantization error, improving the network loss function, and reducing the gradient error.
arXiv Detail & Related papers (2020-03-31T16:47:20Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturb is an end-to-end feature perturbation learning approach for improving the adversarial robustness of deep neural networks.
Inspired by the Expectation-Maximization, an alternating back-propagation training algorithm is introduced to train the network and noise parameters consecutively.
arXiv Detail & Related papers (2020-03-02T18:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.