Cross-Modal Discrete Representation Learning
- URL: http://arxiv.org/abs/2106.05438v1
- Date: Thu, 10 Jun 2021 00:23:33 GMT
- Title: Cross-Modal Discrete Representation Learning
- Authors: Alexander H. Liu, SouYoung Jin, Cheng-I Jeff Lai, Andrew Rouditchenko,
Aude Oliva, James Glass
- Abstract summary: We present a self-supervised learning framework that learns a representation that captures finer levels of granularity across different modalities.
Our framework relies on a discretized embedding space created via vector quantization that is shared across different modalities.
- Score: 73.68393416984618
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in representation learning have demonstrated an ability to
represent information from different modalities such as video, text, and audio
in a single high-level embedding vector. In this work we present a
self-supervised learning framework that is able to learn a representation that
captures finer levels of granularity across different modalities such as
concepts or events represented by visual objects or spoken words. Our framework
relies on a discretized embedding space created via vector quantization that is
shared across different modalities. Beyond the shared embedding space, we
propose a Cross-Modal Code Matching objective that forces the representations
from different views (modalities) to have a similar distribution over the
discrete embedding space such that cross-modal objects/actions localization can
be performed without direct supervision. In our experiments we show that the
proposed discretized multi-modal fine-grained representation (e.g.,
pixel/word/frame) can complement high-level summary representations (e.g.,
video/sentence/waveform) for improved performance on cross-modal retrieval
tasks. We also observe that the discretized representation uses individual
clusters to represent the same semantic concept across modalities.
Related papers
- Latent Functional Maps: a spectral framework for representation alignment [34.20582953800544]
We introduce a multi-purpose framework to the representation learning community, which allows to: (i) compare different spaces in an interpretable way and measure their intrinsic similarity; (ii) find correspondences between them, both in unsupervised and weakly supervised settings, and (iii) to effectively transfer representations between distinct spaces.
We validate our framework on various applications, ranging from stitching to retrieval tasks, and on multiple modalities, demonstrating that Latent Functional Maps can serve as a swiss-army knife for representation alignment.
arXiv Detail & Related papers (2024-06-20T10:43:28Z) - Neural Clustering based Visual Representation Learning [61.72646814537163]
Clustering is one of the most classic approaches in machine learning and data analysis.
We propose feature extraction with clustering (FEC), which views feature extraction as a process of selecting representatives from data.
FEC alternates between grouping pixels into individual clusters to abstract representatives and updating the deep features of pixels with current representatives.
arXiv Detail & Related papers (2024-03-26T06:04:50Z) - Disentangling Multi-view Representations Beyond Inductive Bias [32.15900989696017]
We propose a novel multi-view representation disentangling method that ensures both interpretability and generalizability of the resulting representations.
Our experiments on four multi-view datasets demonstrate that our proposed method outperforms 12 comparison methods in terms of clustering and classification performance.
arXiv Detail & Related papers (2023-08-03T09:09:28Z) - Revisiting Multimodal Representation in Contrastive Learning: From Patch
and Token Embeddings to Finite Discrete Tokens [76.40196364163663]
We propose a learning-based vision-language pre-training approach, such as CLIP.
We show that our method can learn more comprehensive representations and capture meaningful cross-modal correspondence.
arXiv Detail & Related papers (2023-03-27T00:58:39Z) - A Clustering-guided Contrastive Fusion for Multi-view Representation
Learning [7.630965478083513]
We propose a deep fusion network to fuse view-specific representations into the view-common representation.
We also design an asymmetrical contrastive strategy that aligns the view-common representation and each view-specific representation.
In the incomplete view scenario, our proposed method resists noise interference better than those of our competitors.
arXiv Detail & Related papers (2022-12-28T07:21:05Z) - Framework-agnostic Semantically-aware Global Reasoning for Segmentation [29.69187816377079]
We propose a component that learns to project image features into latent representations and reason between them.
Our design encourages the latent regions to represent semantic concepts by ensuring that the activated regions are spatially disjoint.
Our latent tokens are semantically interpretable and diverse and provide a rich set of features that can be transferred to downstream tasks.
arXiv Detail & Related papers (2022-12-06T21:42:05Z) - Learning Semantic Textual Similarity via Topic-informed Discrete Latent
Variables [17.57873577962635]
We develop a topic-informed discrete latent variable model for semantic textual similarity.
Our model learns a shared latent space for sentence-pair representation via vector quantization.
We show that our model is able to surpass several strong neural baselines in semantic textual similarity tasks.
arXiv Detail & Related papers (2022-11-07T15:09:58Z) - Support-set based Multi-modal Representation Enhancement for Video
Captioning [121.70886789958799]
We propose a Support-set based Multi-modal Representation Enhancement (SMRE) model to mine rich information in a semantic subspace shared between samples.
Specifically, we propose a Support-set Construction (SC) module to construct a support-set to learn underlying connections between samples and obtain semantic-related visual elements.
During this process, we design a Semantic Space Transformation (SST) module to constrain relative distance and administrate multi-modal interactions in a self-supervised way.
arXiv Detail & Related papers (2022-05-19T03:40:29Z) - Multimodal Clustering Networks for Self-supervised Learning from
Unlabeled Videos [69.61522804742427]
This paper proposes a self-supervised training framework that learns a common multimodal embedding space.
We extend the concept of instance-level contrastive learning with a multimodal clustering step to capture semantic similarities across modalities.
The resulting embedding space enables retrieval of samples across all modalities, even from unseen datasets and different domains.
arXiv Detail & Related papers (2021-04-26T15:55:01Z) - Visual Concept Reasoning Networks [93.99840807973546]
A split-transform-merge strategy has been broadly used as an architectural constraint in convolutional neural networks for visual recognition tasks.
We propose to exploit this strategy and combine it with our Visual Concept Reasoning Networks (VCRNet) to enable reasoning between high-level visual concepts.
Our proposed model, VCRNet, consistently improves the performance by increasing the number of parameters by less than 1%.
arXiv Detail & Related papers (2020-08-26T20:02:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.