Cross-domain Contrastive Learning for Unsupervised Domain Adaptation
- URL: http://arxiv.org/abs/2106.05528v1
- Date: Thu, 10 Jun 2021 06:32:30 GMT
- Title: Cross-domain Contrastive Learning for Unsupervised Domain Adaptation
- Authors: Rui Wang, Zuxuan Wu, Zejia Weng, Jingjing Chen, Guo-Jun Qi, Yu-Gang
Jiang
- Abstract summary: Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from a fully-labeled source domain to a different unlabeled target domain.
We build upon contrastive self-supervised learning to align features so as to reduce the domain discrepancy between training and testing sets.
- Score: 108.63914324182984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Unsupervised domain adaptation (UDA) aims to transfer knowledge learned from
a fully-labeled source domain to a different unlabeled target domain. Most
existing UDA methods learn domain-invariant feature representations by
minimizing feature distances across domains. In this work, we build upon
contrastive self-supervised learning to align features so as to reduce the
domain discrepancy between training and testing sets. Exploring the same set of
categories shared by both domains, we introduce a simple yet effective
framework CDCL, for domain alignment. In particular, given an anchor image from
one domain, we minimize its distances to cross-domain samples from the same
class relative to those from different categories. Since target labels are
unavailable, we use a clustering-based approach with carefully initialized
centers to produce pseudo labels. In addition, we demonstrate that CDCL is a
general framework and can be adapted to the data-free setting, where the source
data are unavailable during training, with minimal modification. We conduct
experiments on two widely used domain adaptation benchmarks, i.e., Office-31
and VisDA-2017, and demonstrate that CDCL achieves state-of-the-art performance
on both datasets.
Related papers
- Making the Best of Both Worlds: A Domain-Oriented Transformer for
Unsupervised Domain Adaptation [31.150256154504696]
Unsupervised Domain Adaptation (UDA) has propelled the deployment of deep learning from limited experimental datasets into real-world unconstrained domains.
Most UDA approaches align features within a common embedding space and apply a shared classifier for target prediction.
We propose to simultaneously conduct feature alignment in two individual spaces focusing on different domains, and create for each space a domain-oriented classifier.
arXiv Detail & Related papers (2022-08-02T01:38:37Z) - Dynamic Instance Domain Adaptation [109.53575039217094]
Most studies on unsupervised domain adaptation assume that each domain's training samples come with domain labels.
We develop a dynamic neural network with adaptive convolutional kernels to generate instance-adaptive residuals to adapt domain-agnostic deep features to each individual instance.
Our model, dubbed DIDA-Net, achieves state-of-the-art performance on several commonly used single-source and multi-source UDA datasets.
arXiv Detail & Related papers (2022-03-09T20:05:54Z) - Multi-Level Features Contrastive Networks for Unsupervised Domain
Adaptation [6.934905764152813]
Unsupervised domain adaptation aims to train a model from the labeled source domain to make predictions on the unlabeled target domain.
Existing methods tend to align the two domains directly at the domain-level, or perform class-level domain alignment based on deep feature.
In this paper, we develop this work on the method of class-level alignment.
arXiv Detail & Related papers (2021-09-14T09:23:27Z) - Contrastive Learning and Self-Training for Unsupervised Domain
Adaptation in Semantic Segmentation [71.77083272602525]
UDA attempts to provide efficient knowledge transfer from a labeled source domain to an unlabeled target domain.
We propose a contrastive learning approach that adapts category-wise centroids across domains.
We extend our method with self-training, where we use a memory-efficient temporal ensemble to generate consistent and reliable pseudo-labels.
arXiv Detail & Related papers (2021-05-05T11:55:53Z) - Prototypical Cross-domain Self-supervised Learning for Few-shot
Unsupervised Domain Adaptation [91.58443042554903]
We propose an end-to-end Prototypical Cross-domain Self-Supervised Learning (PCS) framework for Few-shot Unsupervised Domain Adaptation (FUDA)
PCS not only performs cross-domain low-level feature alignment, but it also encodes and aligns semantic structures in the shared embedding space across domains.
Compared with state-of-the-art methods, PCS improves the mean classification accuracy over different domain pairs on FUDA by 10.5%, 3.5%, 9.0%, and 13.2% on Office, Office-Home, VisDA-2017, and DomainNet, respectively.
arXiv Detail & Related papers (2021-03-31T02:07:42Z) - Surprisingly Simple Semi-Supervised Domain Adaptation with Pretraining
and Consistency [93.89773386634717]
Visual domain adaptation involves learning to classify images from a target visual domain using labels available in a different source domain.
We show that in the presence of a few target labels, simple techniques like self-supervision (via rotation prediction) and consistency regularization can be effective without any adversarial alignment to learn a good target classifier.
Our Pretraining and Consistency (PAC) approach, can achieve state of the art accuracy on this semi-supervised domain adaptation task, surpassing multiple adversarial domain alignment methods, across multiple datasets.
arXiv Detail & Related papers (2021-01-29T18:40:17Z) - Cross-domain Self-supervised Learning for Domain Adaptation with Few
Source Labels [78.95901454696158]
We propose a novel Cross-Domain Self-supervised learning approach for domain adaptation.
Our method significantly boosts performance of target accuracy in the new target domain with few source labels.
arXiv Detail & Related papers (2020-03-18T15:11:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.