MolGrow: A Graph Normalizing Flow for Hierarchical Molecular Generation
- URL: http://arxiv.org/abs/2106.05856v1
- Date: Wed, 3 Feb 2021 17:48:52 GMT
- Title: MolGrow: A Graph Normalizing Flow for Hierarchical Molecular Generation
- Authors: Maksim Kuznetsov, Daniil Polykovskiy
- Abstract summary: We propose a hierarchical normalizing flow model for generating molecular graphs.
The model produces new molecular structures from a single-node graph by splitting every node into two.
We show successful experiments on global and constrained optimization of chemical properties using latent codes of the model.
- Score: 9.594432031144716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a hierarchical normalizing flow model for generating molecular
graphs. The model produces new molecular structures from a single-node graph by
recursively splitting every node into two. All operations are invertible and
can be used as plug-and-play modules. The hierarchical nature of the latent
codes allows for precise changes in the resulting graph: perturbations in the
top layer cause global structural changes, while perturbations in the
consequent layers change the resulting molecule marginally. The proposed model
outperforms existing generative graph models on the distribution learning task.
We also show successful experiments on global and constrained optimization of
chemical properties using latent codes of the model.
Related papers
- IFH: a Diffusion Framework for Flexible Design of Graph Generative Models [53.219279193440734]
Graph generative models can be classified into two prominent families: one-shot models, which generate a graph in one go, and sequential models, which generate a graph by successive additions of nodes and edges.
This paper proposes a graph generative model, called Insert-Fill-Halt (IFH), that supports the specification of a sequentiality degree.
arXiv Detail & Related papers (2024-08-23T16:24:40Z) - Graph Generation via Spectral Diffusion [51.60814773299899]
We present GRASP, a novel graph generative model based on 1) the spectral decomposition of the graph Laplacian matrix and 2) a diffusion process.
Specifically, we propose to use a denoising model to sample eigenvectors and eigenvalues from which we can reconstruct the graph Laplacian and adjacency matrix.
Our permutation invariant model can also handle node features by concatenating them to the eigenvectors of each node.
arXiv Detail & Related papers (2024-02-29T09:26:46Z) - MolHF: A Hierarchical Normalizing Flow for Molecular Graph Generation [4.517805235253331]
MolHF is a new hierarchical flow-based model that generates molecular graphs in a coarse-to-fine manner.
MolHF is the first flow-based model that can be applied to model larger molecules (polymer) with more than 100 heavy atoms.
arXiv Detail & Related papers (2023-05-15T08:59:35Z) - Graph Generation with Diffusion Mixture [57.78958552860948]
Generation of graphs is a major challenge for real-world tasks that require understanding the complex nature of their non-Euclidean structures.
We propose a generative framework that models the topology of graphs by explicitly learning the final graph structures of the diffusion process.
arXiv Detail & Related papers (2023-02-07T17:07:46Z) - Conditional Diffusion Based on Discrete Graph Structures for Molecular
Graph Generation [32.66694406638287]
We propose a Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation.
Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through differential equations (SDE)
We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states.
arXiv Detail & Related papers (2023-01-01T15:24:15Z) - DiGress: Discrete Denoising diffusion for graph generation [79.13904438217592]
DiGress is a discrete denoising diffusion model for generating graphs with categorical node and edge attributes.
It achieves state-of-the-art performance on molecular and non-molecular datasets, with up to 3x validity improvement.
It is also the first model to scale to the large GuacaMol dataset containing 1.3M drug-like molecules.
arXiv Detail & Related papers (2022-09-29T12:55:03Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
We investigate efficient learning from higher-order graph convolution and learning directly from adjacency matrix for node classification.
We show that the resulting model lead to new graphs and residual scaling parameter.
We demonstrate that the proposed methods obtain improved accuracy for node-classification of non-homophilous parameters.
arXiv Detail & Related papers (2022-09-12T04:46:55Z) - GraphPiece: Efficiently Generating High-Quality Molecular Graph with
Substructures [7.021635649909492]
We propose a method to automatically discover common substructures, which we call em graph pieces, from given molecular graphs.
Based on graph pieces, we leverage a variational autoencoder to generate molecules in two phases: piece-level graph generation followed by bond completion.
arXiv Detail & Related papers (2021-06-29T05:26:18Z) - A Graph VAE and Graph Transformer Approach to Generating Molecular
Graphs [1.6631602844999724]
We propose a variational autoencoder and a transformer based model which fully utilise graph convolutional and graph pooling layers.
The transformer model implements a novel node encoding layer, replacing the position encoding typically used in transformers, to create a transformer with no position information that operates on graphs.
In experiments we chose a benchmark task of molecular generation, given the importance of both generated node and edge features.
arXiv Detail & Related papers (2021-04-09T13:13:06Z) - Molecular graph generation with Graph Neural Networks [2.7393821783237184]
We introduce a sequential molecular graph generator based on a set of graph neural network modules, which we call MG2N2.
Our model is capable of generalizing molecular patterns seen during the training phase, without overfitting.
arXiv Detail & Related papers (2020-12-14T10:32:57Z) - Conditional Constrained Graph Variational Autoencoders for Molecule
Design [70.59828655929194]
We present Conditional Constrained Graph Variational Autoencoder (CCGVAE), a model that implements this key-idea in a state-of-the-art model.
We show improved results on several evaluation metrics on two commonly adopted datasets for molecule generation.
arXiv Detail & Related papers (2020-09-01T21:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.