A Meta Learning Approach to Discerning Causal Graph Structure
- URL: http://arxiv.org/abs/2106.05859v1
- Date: Sun, 6 Jun 2021 22:44:44 GMT
- Title: A Meta Learning Approach to Discerning Causal Graph Structure
- Authors: Justin Wong and Dominik Damjakob
- Abstract summary: We explore the usage of meta-learning to derive the causal direction between variables by optimizing over a measure of distribution simplicity.
We incorporate a graph representation which includes latent variables and allows for more generalizability and graph structure expression.
Our model is able to learn causal direction indicators for complex graph structures despite effects of latent confounders.
- Score: 1.52292571922932
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We explore the usage of meta-learning to derive the causal direction between
variables by optimizing over a measure of distribution simplicity. We
incorporate a stochastic graph representation which includes latent variables
and allows for more generalizability and graph structure expression. Our model
is able to learn causal direction indicators for complex graph structures
despite effects of latent confounders. Further, we explore robustness of our
method with respect to violations of our distributional assumptions and data
scarcity. Our model is particularly robust to modest data scarcity, but is less
robust to distributional changes. By interpreting the model predictions as
stochastic events, we propose a simple ensemble method classifier to reduce the
outcome variability as an average of biased events. This methodology
demonstrates ability to infer the existence as well as the direction of a
causal relationship between data distributions.
Related papers
- A Complete Decomposition of KL Error using Refined Information and Mode Interaction Selection [11.994525728378603]
We revisit the classical formulation of the log-linear model with a focus on higher-order mode interactions.
We find that our learned distributions are able to more efficiently use the finite amount of data which is available in practice.
arXiv Detail & Related papers (2024-10-15T18:08:32Z) - Introducing Diminutive Causal Structure into Graph Representation Learning [19.132025125620274]
We introduce a novel method that enables Graph Neural Networks (GNNs) to glean insights from specialized diminutive causal structures.
Our method specifically extracts causal knowledge from the model representation of these diminutive causal structures.
arXiv Detail & Related papers (2024-06-13T00:18:20Z) - Learning Divergence Fields for Shift-Robust Graph Representations [73.11818515795761]
In this work, we propose a geometric diffusion model with learnable divergence fields for the challenging problem with interdependent data.
We derive a new learning objective through causal inference, which can guide the model to learn generalizable patterns of interdependence that are insensitive across domains.
arXiv Detail & Related papers (2024-06-07T14:29:21Z) - Generalizable Information Theoretic Causal Representation [37.54158138447033]
We propose to learn causal representation from observational data by regularizing the learning procedure with mutual information measures according to our hypothetical causal graph.
The optimization involves a counterfactual loss, based on which we deduce a theoretical guarantee that the causality-inspired learning is with reduced sample complexity and better generalization ability.
arXiv Detail & Related papers (2022-02-17T00:38:35Z) - Invariance Principle Meets Out-of-Distribution Generalization on Graphs [66.04137805277632]
Complex nature of graphs thwarts the adoption of the invariance principle for OOD generalization.
domain or environment partitions, which are often required by OOD methods, can be expensive to obtain for graphs.
We propose a novel framework to explicitly model this process using a contrastive strategy.
arXiv Detail & Related papers (2022-02-11T04:38:39Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - Hyperbolic Graph Embedding with Enhanced Semi-Implicit Variational
Inference [48.63194907060615]
We build off of semi-implicit graph variational auto-encoders to capture higher-order statistics in a low-dimensional graph latent representation.
We incorporate hyperbolic geometry in the latent space through a Poincare embedding to efficiently represent graphs exhibiting hierarchical structure.
arXiv Detail & Related papers (2020-10-31T05:48:34Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.