DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm
- URL: http://arxiv.org/abs/2106.06300v1
- Date: Fri, 11 Jun 2021 10:37:14 GMT
- Title: DG-LMC: A Turn-key and Scalable Synchronous Distributed MCMC Algorithm
- Authors: Vincent Plassier, Maxime Vono, Alain Durmus and Eric Moulines
- Abstract summary: We derive a user-friendly centralised distributed MCMC algorithm with provable scaling in high-dimensional settings.
We illustrate the relevance of the proposed methodology on both synthetic and real data experiments.
- Score: 21.128416842467132
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Performing reliable Bayesian inference on a big data scale is becoming a
keystone in the modern era of machine learning. A workhorse class of methods to
achieve this task are Markov chain Monte Carlo (MCMC) algorithms and their
design to handle distributed datasets has been the subject of many works.
However, existing methods are not completely either reliable or computationally
efficient. In this paper, we propose to fill this gap in the case where the
dataset is partitioned and stored on computing nodes within a cluster under a
master/slaves architecture. We derive a user-friendly centralised distributed
MCMC algorithm with provable scaling in high-dimensional settings. We
illustrate the relevance of the proposed methodology on both synthetic and real
data experiments.
Related papers
- Distributed Collapsed Gibbs Sampler for Dirichlet Process Mixture Models
in Federated Learning [0.22499166814992444]
This paper proposes a new distributed Markov Chain Monte Carlo (MCMC) inference method for DPMMs (DisCGS) using sufficient statistics.
Our approach uses the collapsed Gibbs sampler and is specifically designed to work on distributed data across independent and heterogeneous machines.
For instance, with a dataset of 100K data points, the centralized algorithm requires approximately 12 hours to complete 100 iterations while our approach achieves the same number of iterations in just 3 minutes.
arXiv Detail & Related papers (2023-12-18T13:16:18Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - Parallel Approaches to Accelerate Bayesian Decision Trees [1.9728521995447947]
We propose two methods for exploiting parallelism in the MCMC.
In the first, we replace the MCMC with another numerical Bayesian approach.
In the second, we consider data partitioning.
arXiv Detail & Related papers (2023-01-22T09:56:26Z) - Detection and Evaluation of Clusters within Sequential Data [58.720142291102135]
Clustering algorithms for Block Markov Chains possess theoretical optimality guarantees.
In particular, our sequential data is derived from human DNA, written text, animal movement data and financial markets.
It is found that the Block Markov Chain model assumption can indeed produce meaningful insights in exploratory data analyses.
arXiv Detail & Related papers (2022-10-04T15:22:39Z) - Asynchronous Parallel Incremental Block-Coordinate Descent for
Decentralized Machine Learning [55.198301429316125]
Machine learning (ML) is a key technique for big-data-driven modelling and analysis of massive Internet of Things (IoT) based intelligent and ubiquitous computing.
For fast-increasing applications and data amounts, distributed learning is a promising emerging paradigm since it is often impractical or inefficient to share/aggregate data.
This paper studies the problem of training an ML model over decentralized systems, where data are distributed over many user devices.
arXiv Detail & Related papers (2022-02-07T15:04:15Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
Big data, including applications with high security requirements, are often collected and stored on multiple heterogeneous devices, such as mobile devices, drones and vehicles.
Due to the limitations of communication costs and security requirements, it is of paramount importance to extract information in a decentralized manner instead of aggregating data to a fusion center.
We consider the problem of learning model parameters in a multi-agent system with data locally processed via distributed edge nodes.
A class of mini-batch alternating direction method of multipliers (ADMM) algorithms is explored to develop the distributed learning model.
arXiv Detail & Related papers (2020-10-02T10:41:59Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
We build upon the notion of the posterior similarity matrix (PSM) in order to suggest new approaches for summarising the output of MCMC algorithms for Bayesian clustering models.
A key contribution of our work is the observation that PSMs are positive semi-definite, and hence can be used to define probabilistically-motivated kernel matrices.
arXiv Detail & Related papers (2020-09-27T14:16:14Z) - Non-convex Learning via Replica Exchange Stochastic Gradient MCMC [25.47669573608621]
We propose an adaptive replica exchange SGMCMC (reSGMCMC) to automatically correct the bias and study the corresponding properties.
Empirically, we test the algorithm through extensive experiments on various setups and obtain the results.
arXiv Detail & Related papers (2020-08-12T15:02:59Z) - Learnable Subspace Clustering [76.2352740039615]
We develop a learnable subspace clustering paradigm to efficiently solve the large-scale subspace clustering problem.
The key idea is to learn a parametric function to partition the high-dimensional subspaces into their underlying low-dimensional subspaces.
To the best of our knowledge, this paper is the first work to efficiently cluster millions of data points among the subspace clustering methods.
arXiv Detail & Related papers (2020-04-09T12:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.