Incorporating External POS Tagger for Punctuation Restoration
- URL: http://arxiv.org/abs/2106.06731v1
- Date: Sat, 12 Jun 2021 09:58:06 GMT
- Title: Incorporating External POS Tagger for Punctuation Restoration
- Authors: Ning Shi, Wei Wang, Boxin Wang, Jinfeng Li, Xiangyu Liu and Zhouhan
Lin
- Abstract summary: Punctuation restoration is an important post-processing step in automatic speech recognition.
Part-of-speech (POS) taggers provide informative tags, suggesting each input token's syntactic role.
We incorporate an external POS tagger and fuse its predicted labels into the existing language model to provide syntactic information.
- Score: 11.573672075002007
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Punctuation restoration is an important post-processing step in automatic
speech recognition. Among other kinds of external information, part-of-speech
(POS) taggers provide informative tags, suggesting each input token's syntactic
role, which has been shown to be beneficial for the punctuation restoration
task. In this work, we incorporate an external POS tagger and fuse its
predicted labels into the existing language model to provide syntactic
information. Besides, we propose sequence boundary sampling (SBS) to learn
punctuation positions more efficiently as a sequence tagging task. Experimental
results show that our methods can consistently obtain performance gains and
achieve a new state-of-the-art on the common IWSLT benchmark. Further ablation
studies illustrate that both large pre-trained language models and the external
POS tagger take essential parts to improve the model's performance.
Related papers
- A Tale of Two Languages: Large-Vocabulary Continuous Sign Language Recognition from Spoken Language Supervision [74.972172804514]
We introduce a multi-task Transformer model, CSLR2, that is able to ingest a signing sequence and output in a joint embedding space between signed language and spoken language text.
New dataset annotations provide continuous sign-level annotations for six hours of test videos, and will be made publicly available.
Our model significantly outperforms the previous state of the art on both tasks.
arXiv Detail & Related papers (2024-05-16T17:19:06Z) - Slot Induction via Pre-trained Language Model Probing and Multi-level
Contrastive Learning [62.839109775887025]
Slot Induction (SI) task whose objective is to induce slot boundaries without explicit knowledge of token-level slot annotations.
We propose leveraging Unsupervised Pre-trained Language Model (PLM) Probing and Contrastive Learning mechanism to exploit unsupervised semantic knowledge extracted from PLM.
Our approach is shown to be effective in SI task and capable of bridging the gaps with token-level supervised models on two NLU benchmark datasets.
arXiv Detail & Related papers (2023-08-09T05:08:57Z) - Prefer to Classify: Improving Text Classifiers via Auxiliary Preference
Learning [76.43827771613127]
In this paper, we investigate task-specific preferences between pairs of input texts as a new alternative way for such auxiliary data annotation.
We propose a novel multi-task learning framework, called prefer-to-classify (P2C), which can enjoy the cooperative effect of learning both the given classification task and the auxiliary preferences.
arXiv Detail & Related papers (2023-06-08T04:04:47Z) - Improving BERT with Syntax-aware Local Attention [14.70545694771721]
We propose a syntax-aware local attention, where the attention scopes are based on the distances in the syntactic structure.
We conduct experiments on various single-sentence benchmarks, including sentence classification and sequence labeling tasks.
Our model achieves better performance owing to more focused attention over syntactically relevant words.
arXiv Detail & Related papers (2020-12-30T13:29:58Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
We introduce Sentence-level Language Modeling, a new pre-training objective for learning a discourse language representation.
We show that this feature of our model improves the performance of the original BERT by large margins.
arXiv Detail & Related papers (2020-10-30T13:33:41Z) - An Effective Contextual Language Modeling Framework for Speech
Summarization with Augmented Features [13.97006782398121]
Bidirectional Representations from Transformers (BERT) model was proposed and has achieved record-breaking success on many natural language processing tasks.
We explore the incorporation of confidence scores into sentence representations to see if such an attempt could help alleviate the negative effects caused by imperfect automatic speech recognition.
We validate the effectiveness of our proposed method on a benchmark dataset.
arXiv Detail & Related papers (2020-06-01T18:27:48Z) - BURT: BERT-inspired Universal Representation from Twin Structure [89.82415322763475]
BURT (BERT inspired Universal Representation from Twin Structure) is capable of generating universal, fixed-size representations for input sequences of any granularity.
Our proposed BURT adopts the Siamese network, learning sentence-level representations from natural language inference dataset and word/phrase-level representations from paraphrasing dataset.
We evaluate BURT across different granularities of text similarity tasks, including STS tasks, SemEval2013 Task 5(a) and some commonly used word similarity tasks.
arXiv Detail & Related papers (2020-04-29T04:01:52Z) - Adversarial Transfer Learning for Punctuation Restoration [58.2201356693101]
Adversarial multi-task learning is introduced to learn task invariant knowledge for punctuation prediction.
Experiments are conducted on IWSLT2011 datasets.
arXiv Detail & Related papers (2020-04-01T06:19:56Z) - Machine Learning Approaches for Amharic Parts-of-speech Tagging [0.0]
Performance of the current POS taggers in Amharic is not as good as that of the contemporary POS taggers available for English and other European languages.
The aim of this work is to improve POS tagging performance for the Amharic language, which was never above 91%.
arXiv Detail & Related papers (2020-01-10T06:40:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.