Self-training Guided Adversarial Domain Adaptation For Thermal Imagery
- URL: http://arxiv.org/abs/2106.07165v1
- Date: Mon, 14 Jun 2021 05:17:21 GMT
- Title: Self-training Guided Adversarial Domain Adaptation For Thermal Imagery
- Authors: Ibrahim Batuhan Akkaya, Fazil Altinel, Ugur Halici
- Abstract summary: We propose an unsupervised domain adaptation method which does not require RGB-to-thermal image pairs.
We employ large-scale RGB dataset MS-COCO as source domain and thermal dataset FLIR ADAS as target domain.
To perform self-training, pseudo labels are assigned to the samples on the target thermal domain to learn more generalized representations for the target domain.
- Score: 0.12891210250935145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep models trained on large-scale RGB image datasets have shown tremendous
success. It is important to apply such deep models to real-world problems.
However, these models suffer from a performance bottleneck under illumination
changes. Thermal IR cameras are more robust against such changes, and thus can
be very useful for the real-world problems. In order to investigate efficacy of
combining feature-rich visible spectrum and thermal image modalities, we
propose an unsupervised domain adaptation method which does not require
RGB-to-thermal image pairs. We employ large-scale RGB dataset MS-COCO as source
domain and thermal dataset FLIR ADAS as target domain to demonstrate results of
our method. Although adversarial domain adaptation methods aim to align the
distributions of source and target domains, simply aligning the distributions
cannot guarantee perfect generalization to the target domain. To this end, we
propose a self-training guided adversarial domain adaptation method to promote
generalization capabilities of adversarial domain adaptation methods. To
perform self-training, pseudo labels are assigned to the samples on the target
thermal domain to learn more generalized representations for the target domain.
Extensive experimental analyses show that our proposed method achieves better
results than the state-of-the-art adversarial domain adaptation methods. The
code and models are publicly available.
Related papers
- Spectral Adversarial MixUp for Few-Shot Unsupervised Domain Adaptation [72.70876977882882]
Domain shift is a common problem in clinical applications, where the training images (source domain) and the test images (target domain) are under different distributions.
We propose a novel method for Few-Shot Unsupervised Domain Adaptation (FSUDA), where only a limited number of unlabeled target domain samples are available for training.
arXiv Detail & Related papers (2023-09-03T16:02:01Z) - Enhancing Visual Domain Adaptation with Source Preparation [5.287588907230967]
Domain Adaptation techniques fail to consider the characteristics of the source domain itself.
We propose Source Preparation (SP), a method to mitigate source domain biases.
We show that SP enhances UDA across a range of visual domains, with improvements up to 40.64% in mIoU over baseline.
arXiv Detail & Related papers (2023-06-16T18:56:44Z) - Spectral Transfer Guided Active Domain Adaptation For Thermal Imagery [1.911678487931003]
We propose an active domain adaptation method to examine the efficiency of combining the visible spectrum and thermal imagery modalities.
We used the large-scale visible spectrum dataset MS-COCO as the source domain and the thermal dataset FLIR ADAS as the target domain.
Our proposed method outperforms the state-of-the-art active domain adaptation methods.
arXiv Detail & Related papers (2023-04-14T10:04:42Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
We propose a new clustering-based domain adaptation method designed for face recognition task in which the source and target domain do not share any classes.
Our method effectively learns the discriminative target feature by aligning the feature domain globally, and, at the meantime, distinguishing the target clusters locally.
arXiv Detail & Related papers (2022-05-27T12:29:11Z) - An Unsupervised Domain Adaptive Approach for Multimodal 2D Object
Detection in Adverse Weather Conditions [5.217255784808035]
We propose an unsupervised domain adaptation framework to bridge the domain gap between source and target domains.
We use a data augmentation scheme that simulates weather distortions to add domain confusion and prevent overfitting on the source data.
Experiments performed on the DENSE dataset show that our method can substantially alleviate the domain gap.
arXiv Detail & Related papers (2022-03-07T18:10:40Z) - Frequency Spectrum Augmentation Consistency for Domain Adaptive Object
Detection [107.52026281057343]
We introduce a Frequency Spectrum Augmentation Consistency (FSAC) framework with four different low-frequency filter operations.
In the first stage, we utilize all the original and augmented source data to train an object detector.
In the second stage, augmented source and target data with pseudo labels are adopted to perform the self-training for prediction consistency.
arXiv Detail & Related papers (2021-12-16T04:07:01Z) - Meta-UDA: Unsupervised Domain Adaptive Thermal Object Detection using
Meta-Learning [64.92447072894055]
Infrared (IR) cameras are robust under adverse illumination and lighting conditions.
We propose an algorithm meta-learning framework to improve existing UDA methods.
We produce a state-of-the-art thermal detector for the KAIST and DSIAC datasets.
arXiv Detail & Related papers (2021-10-07T02:28:18Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Generalizable Representation Learning for Mixture Domain Face
Anti-Spoofing [53.82826073959756]
Face anti-spoofing approach based on domain generalization(DG) has drawn growing attention due to its robustness forunseen scenarios.
We propose domain dy-namic adjustment meta-learning (D2AM) without using do-main labels.
To overcome the limitation, we propose domain dy-namic adjustment meta-learning (D2AM) without using do-main labels.
arXiv Detail & Related papers (2021-05-06T06:04:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.