Context-Aware Image Inpainting with Learned Semantic Priors
- URL: http://arxiv.org/abs/2106.07220v1
- Date: Mon, 14 Jun 2021 08:09:43 GMT
- Title: Context-Aware Image Inpainting with Learned Semantic Priors
- Authors: Wendong Zhang, Junwei Zhu, Ying Tai, Yunbo Wang, Wenqing Chu, Bingbing
Ni, Chengjie Wang and Xiaokang Yang
- Abstract summary: We introduce pretext tasks that are semantically meaningful to estimating the missing contents.
We propose a context-aware image inpainting model, which adaptively integrates global semantics and local features.
- Score: 100.99543516733341
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in image inpainting have shown impressive results for
generating plausible visual details on rather simple backgrounds. However, for
complex scenes, it is still challenging to restore reasonable contents as the
contextual information within the missing regions tends to be ambiguous. To
tackle this problem, we introduce pretext tasks that are semantically
meaningful to estimating the missing contents. In particular, we perform
knowledge distillation on pretext models and adapt the features to image
inpainting. The learned semantic priors ought to be partially invariant between
the high-level pretext task and low-level image inpainting, which not only help
to understand the global context but also provide structural guidance for the
restoration of local textures. Based on the semantic priors, we further propose
a context-aware image inpainting model, which adaptively integrates global
semantics and local features in a unified image generator. The semantic learner
and the image generator are trained in an end-to-end manner. We name the model
SPL to highlight its ability to learn and leverage semantic priors. It achieves
the state of the art on Places2, CelebA, and Paris StreetView datasets.
Related papers
- Improving Text-guided Object Inpainting with Semantic Pre-inpainting [95.17396565347936]
We decompose the typical single-stage object inpainting into two cascaded processes: semantic pre-inpainting and high-fieldity object generation.
To achieve this, we cascade a Transformer-based semantic inpainter and an object inpainting diffusion model, leading to a novel CAscaded Transformer-Diffusion framework.
arXiv Detail & Related papers (2024-09-12T17:55:37Z) - Locate, Assign, Refine: Taming Customized Image Inpainting with Text-Subject Guidance [17.251982243534144]
LAR-Gen is a novel approach for image inpainting that enables seamless inpainting of masked scene images.
Our approach adopts a coarse-to-fine manner to ensure subject identity preservation and local semantic coherence.
Experiments and varied application scenarios demonstrate the superiority of LAR-Gen in terms of both identity preservation and text semantic consistency.
arXiv Detail & Related papers (2024-03-28T16:07:55Z) - BOSS: Bottom-up Cross-modal Semantic Composition with Hybrid
Counterfactual Training for Robust Content-based Image Retrieval [61.803481264081036]
Content-Based Image Retrieval (CIR) aims to search for a target image by concurrently comprehending the composition of an example image and a complementary text.
We tackle this task by a novel underlinetextbfBottom-up crunderlinetextbfOss-modal underlinetextbfSemantic compounderlinetextbfSition (textbfBOSS) with Hybrid Counterfactual Training framework.
arXiv Detail & Related papers (2022-07-09T07:14:44Z) - Knowledge Mining with Scene Text for Fine-Grained Recognition [53.74297368412834]
We propose an end-to-end trainable network that mines implicit contextual knowledge behind scene text image.
We employ KnowBert to retrieve relevant knowledge for semantic representation and combine it with image features for fine-grained classification.
Our method outperforms the state-of-the-art by 3.72% mAP and 5.39% mAP, respectively.
arXiv Detail & Related papers (2022-03-27T05:54:00Z) - Fully Context-Aware Image Inpainting with a Learned Semantic Pyramid [102.24539566851809]
Restoring reasonable and realistic content for arbitrary missing regions in images is an important yet challenging task.
Recent image inpainting models have made significant progress in generating vivid visual details, but they can still lead to texture blurring or structural distortions.
We propose the Semantic Pyramid Network (SPN) motivated by the idea that learning multi-scale semantic priors can greatly benefit the recovery of locally missing content in images.
arXiv Detail & Related papers (2021-12-08T04:33:33Z) - Boosting Image Outpainting with Semantic Layout Prediction [18.819765707811904]
We train a GAN to extend regions in semantic segmentation domain instead of image domain.
Another GAN model is trained to synthesize real images based on the extended semantic layouts.
Our approach can handle semantic clues more easily and hence works better in complex scenarios.
arXiv Detail & Related papers (2021-10-18T13:09:31Z) - Semantic-Guided Inpainting Network for Complex Urban Scenes Manipulation [19.657440527538547]
In this work, we propose a novel deep learning model to alter a complex urban scene by removing a user-specified portion of the image.
Inspired by recent works on image inpainting, our proposed method leverages the semantic segmentation to model the content and structure of the image.
To generate reliable results, we design a new decoder block that combines the semantic segmentation and generation task.
arXiv Detail & Related papers (2020-10-19T09:17:17Z) - Text-Guided Neural Image Inpainting [20.551488941041256]
Inpainting task requires filling the corrupted image with contents coherent with the context.
The goal of this paper is to fill the semantic information in corrupted images according to the provided descriptive text.
We propose a novel inpainting model named Text-Guided Dual Attention Inpainting Network (TDANet)
arXiv Detail & Related papers (2020-04-07T09:04:43Z) - Guidance and Evaluation: Semantic-Aware Image Inpainting for Mixed
Scenes [54.836331922449666]
We propose a Semantic Guidance and Evaluation Network (SGE-Net) to update the structural priors and the inpainted image.
It utilizes semantic segmentation map as guidance in each scale of inpainting, under which location-dependent inferences are re-evaluated.
Experiments on real-world images of mixed scenes demonstrated the superiority of our proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2020-03-15T17:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.