Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures
- URL: http://arxiv.org/abs/2106.07635v1
- Date: Mon, 14 Jun 2021 17:52:49 GMT
- Title: Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures
- Authors: Yashas Annadani, Jonas Rothfuss, Alexandre Lacoste, Nino Scherrer,
Anirudh Goyal, Yoshua Bengio, Stefan Bauer
- Abstract summary: We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
- Score: 132.74509389517203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning the causal structure that underlies data is a crucial step towards
robust real-world decision making. The majority of existing work in causal
inference focuses on determining a single directed acyclic graph (DAG) or a
Markov equivalence class thereof. However, a crucial aspect to acting
intelligently upon the knowledge about causal structure which has been inferred
from finite data demands reasoning about its uncertainty. For instance,
planning interventions to find out more about the causal mechanisms that govern
our data requires quantifying epistemic uncertainty over DAGs. While Bayesian
causal inference allows to do so, the posterior over DAGs becomes intractable
even for a small number of variables. Aiming to overcome this issue, we propose
a form of variational inference over the graphs of Structural Causal Models
(SCMs). To this end, we introduce a parametric variational family modelled by
an autoregressive distribution over the space of discrete DAGs. Its number of
parameters does not grow exponentially with the number of variables and can be
tractably learned by maximising an Evidence Lower Bound (ELBO). In our
experiments, we demonstrate that the proposed variational posterior is able to
provide a good approximation of the true posterior.
Related papers
- Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders [16.682775063684907]
We decompose the structure learning problem into inferring causal order and a parent set for each variable given a causal order.
Our method yields state-of-the-art in structure learning on simulated non-linear additive noise benchmarks with scale-free and Erdos-Renyi graph structures.
arXiv Detail & Related papers (2024-02-22T18:39:24Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - A Causal Ordering Prior for Unsupervised Representation Learning [27.18951912984905]
Causal representation learning argues that factors of variation in a dataset are, in fact, causally related.
We propose a fully unsupervised representation learning method that considers a data generation process with a latent additive noise model.
arXiv Detail & Related papers (2023-07-11T18:12:05Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Towards Causal Representation Learning and Deconfounding from Indefinite
Data [17.793702165499298]
Non-statistical data (e.g., images, text, etc.) encounters significant conflicts in terms of properties and methods with traditional causal data.
We redefine causal data from two novel perspectives and then propose three data paradigms.
We implement the above designs as a dynamic variational inference model, tailored to learn causal representation from indefinite data.
arXiv Detail & Related papers (2023-05-04T08:20:37Z) - Bayesian learning of Causal Structure and Mechanisms with GFlowNets and Variational Bayes [51.84122462615402]
We introduce a novel method to learn the structure and mechanisms of the causal model using Variational Bayes-DAG-GFlowNet.
We extend the method of Bayesian causal structure learning using GFlowNets to learn the parameters of a linear-Gaussian model.
arXiv Detail & Related papers (2022-11-04T21:57:39Z) - Large-Scale Differentiable Causal Discovery of Factor Graphs [3.8015092217142223]
We introduce the notion of factor directed acyclic graphs (f-DAGs) as a way to the search space to non-linear low-rank causal interaction models.
We propose a scalable implementation of f-DAG constrained causal discovery for high-dimensional interventional data.
arXiv Detail & Related papers (2022-06-15T21:28:36Z) - BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery [97.79015388276483]
A structural equation model (SEM) is an effective framework to reason over causal relationships represented via a directed acyclic graph (DAG)
Recent advances enabled effective maximum-likelihood point estimation of DAGs from observational data.
We propose BCD Nets, a variational framework for estimating a distribution over DAGs characterizing a linear-Gaussian SEM.
arXiv Detail & Related papers (2021-12-06T03:35:21Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations.
We propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent factors into causal endogenous ones.
Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy.
arXiv Detail & Related papers (2020-04-18T20:09:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.