MICo: Learning improved representations via sampling-based state
similarity for Markov decision processes
- URL: http://arxiv.org/abs/2106.08229v1
- Date: Thu, 3 Jun 2021 14:24:12 GMT
- Title: MICo: Learning improved representations via sampling-based state
similarity for Markov decision processes
- Authors: Pablo Samuel Castro and Tyler Kastner and Prakash Panangaden and Mark
Rowland
- Abstract summary: We present a new behavioural distance over the state space of a Markov decision process.
We demonstrate the use of this distance as an effective means of shaping the learnt representations of deep reinforcement learning agents.
- Score: 18.829939056796313
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a new behavioural distance over the state space of a Markov
decision process, and demonstrate the use of this distance as an effective
means of shaping the learnt representations of deep reinforcement learning
agents. While existing notions of state similarity are typically difficult to
learn at scale due to high computational cost and lack of sample-based
algorithms, our newly-proposed distance addresses both of these issues. In
addition to providing detailed theoretical analysis, we provide empirical
evidence that learning this distance alongside the value function yields
structured and informative representations, including strong results on the
Arcade Learning Environment benchmark.
Related papers
- Provable Representation with Efficient Planning for Partial Observable Reinforcement Learning [74.67655210734338]
In most real-world reinforcement learning applications, state information is only partially observable, which breaks the Markov decision process assumption.
We develop a representation-based perspective that leads to a coherent framework and tractable algorithmic approach for practical reinforcement learning from partial observations.
We empirically demonstrate the proposed algorithm can surpass state-of-the-art performance with partial observations across various benchmarks.
arXiv Detail & Related papers (2023-11-20T23:56:58Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Bootstrapped Representations in Reinforcement Learning [44.49675960752777]
In reinforcement learning (RL), state representations are key to dealing with large or continuous state spaces.
We provide a theoretical characterization of the state representation learnt by temporal difference learning.
We describe the efficacy of these representations for policy evaluation, and use our theoretical analysis to design new auxiliary learning rules.
arXiv Detail & Related papers (2023-06-16T20:14:07Z) - From Patches to Objects: Exploiting Spatial Reasoning for Better Visual
Representations [2.363388546004777]
We propose a novel auxiliary pretraining method that is based on spatial reasoning.
Our proposed method takes advantage of a more flexible formulation of contrastive learning by introducing spatial reasoning as an auxiliary task for discriminative self-supervised methods.
arXiv Detail & Related papers (2023-05-21T07:46:46Z) - Adaptive Local-Component-aware Graph Convolutional Network for One-shot
Skeleton-based Action Recognition [54.23513799338309]
We present an Adaptive Local-Component-aware Graph Convolutional Network for skeleton-based action recognition.
Our method provides a stronger representation than the global embedding and helps our model reach state-of-the-art.
arXiv Detail & Related papers (2022-09-21T02:33:07Z) - State Representation Learning for Goal-Conditioned Reinforcement
Learning [9.162936410696407]
This paper presents a novel state representation for reward-free Markov decision processes.
The idea is to learn, in a self-supervised manner, an embedding space where between pairs of embedded states correspond to the minimum number of actions needed to transition between them.
We show how this representation can be leveraged to learn goal-conditioned policies.
arXiv Detail & Related papers (2022-05-04T09:20:09Z) - Co$^2$L: Contrastive Continual Learning [69.46643497220586]
Recent breakthroughs in self-supervised learning show that such algorithms learn visual representations that can be transferred better to unseen tasks.
We propose a rehearsal-based continual learning algorithm that focuses on continually learning and maintaining transferable representations.
arXiv Detail & Related papers (2021-06-28T06:14:38Z) - Which Mutual-Information Representation Learning Objectives are
Sufficient for Control? [80.2534918595143]
Mutual information provides an appealing formalism for learning representations of data.
This paper formalizes the sufficiency of a state representation for learning and representing the optimal policy.
Surprisingly, we find that two of these objectives can yield insufficient representations given mild and common assumptions on the structure of the MDP.
arXiv Detail & Related papers (2021-06-14T10:12:34Z) - Learning Markov State Abstractions for Deep Reinforcement Learning [17.34529517221924]
We introduce a novel set of conditions and prove that they are sufficient for learning a Markov abstract state representation.
We then describe a practical training procedure that combines inverse model estimation and temporal contrastive learning.
Our approach learns representations that capture the underlying structure of the domain and lead to improved sample efficiency.
arXiv Detail & Related papers (2021-06-08T14:12:36Z) - Learning Invariant Representations for Reinforcement Learning without
Reconstruction [98.33235415273562]
We study how representation learning can accelerate reinforcement learning from rich observations, such as images, without relying either on domain knowledge or pixel-reconstruction.
Bisimulation metrics quantify behavioral similarity between states in continuous MDPs.
We demonstrate the effectiveness of our method at disregarding task-irrelevant information using modified visual MuJoCo tasks.
arXiv Detail & Related papers (2020-06-18T17:59:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.