Improving Entity Linking through Semantic Reinforced Entity Embeddings
- URL: http://arxiv.org/abs/2106.08495v1
- Date: Wed, 16 Jun 2021 00:27:56 GMT
- Title: Improving Entity Linking through Semantic Reinforced Entity Embeddings
- Authors: Feng Hou, Ruili Wang, Jun He, Yi Zhou
- Abstract summary: We propose a method to inject fine-grained semantic information into entity embeddings to reduce the distinctiveness and facilitate the learning of contextual commonality.
Based on our entity embeddings, we achieved new sate-of-the-art performance on entity linking.
- Score: 16.868791358905916
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Entity embeddings, which represent different aspects of each entity with a
single vector like word embeddings, are a key component of neural entity
linking models. Existing entity embeddings are learned from canonical Wikipedia
articles and local contexts surrounding target entities. Such entity embeddings
are effective, but too distinctive for linking models to learn contextual
commonality. We propose a simple yet effective method, FGS2EE, to inject
fine-grained semantic information into entity embeddings to reduce the
distinctiveness and facilitate the learning of contextual commonality. FGS2EE
first uses the embeddings of semantic type words to generate semantic
embeddings, and then combines them with existing entity embeddings through
linear aggregation. Extensive experiments show the effectiveness of such
embeddings. Based on our entity embeddings, we achieved new sate-of-the-art
performance on entity linking.
Related papers
- DyVo: Dynamic Vocabularies for Learned Sparse Retrieval with Entities [29.716152560414738]
We enhance the Learned Sparse Retrieval (LSR) model with Wikipedia concepts and entities.
In experiments across three entity-rich document ranking datasets, the resulting DyVo model substantially outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-10-10T08:41:34Z) - OneNet: A Fine-Tuning Free Framework for Few-Shot Entity Linking via Large Language Model Prompting [49.655711022673046]
OneNet is an innovative framework that utilizes the few-shot learning capabilities of Large Language Models (LLMs) without the need for fine-tuning.
OneNet is structured around three key components prompted by LLMs: (1) an entity reduction processor that simplifies inputs by summarizing and filtering out irrelevant entities, (2) a dual-perspective entity linker that combines contextual cues and prior knowledge for precise entity linking, and (3) an entity consensus judger that employs a unique consistency algorithm to alleviate the hallucination in the entity linking reasoning.
arXiv Detail & Related papers (2024-10-10T02:45:23Z) - Entity Disambiguation via Fusion Entity Decoding [68.77265315142296]
We propose an encoder-decoder model to disambiguate entities with more detailed entity descriptions.
We observe +1.5% improvements in end-to-end entity linking in the GERBIL benchmark compared with EntQA.
arXiv Detail & Related papers (2024-04-02T04:27:54Z) - Two Heads Are Better Than One: Integrating Knowledge from Knowledge
Graphs and Large Language Models for Entity Alignment [31.70064035432789]
We propose a Large Language Model-enhanced Entity Alignment framework (LLMEA)
LLMEA identifies candidate alignments for a given entity by considering both embedding similarities between entities across Knowledge Graphs and edit distances to a virtual equivalent entity.
Experiments conducted on three public datasets reveal that LLMEA surpasses leading baseline models.
arXiv Detail & Related papers (2024-01-30T12:41:04Z) - Few-Shot Nested Named Entity Recognition [4.8693196802491405]
This paper is the first one dedicated to studying the few-shot nested NER task.
We propose a Biaffine-based Contrastive Learning (BCL) framework to learn contextual dependency to distinguish nested entities.
The BCL outperformed three baseline models on the 1-shot and 5-shot tasks in terms of F1 score.
arXiv Detail & Related papers (2022-12-02T03:42:23Z) - Nested Named Entity Recognition from Medical Texts: An Adaptive Shared
Network Architecture with Attentive CRF [53.55504611255664]
We propose a novel method, referred to as ASAC, to solve the dilemma caused by the nested phenomenon.
The proposed method contains two key modules: the adaptive shared (AS) part and the attentive conditional random field (ACRF) module.
Our model could learn better entity representations by capturing the implicit distinctions and relationships between different categories of entities.
arXiv Detail & Related papers (2022-11-09T09:23:56Z) - Knowledge-Rich Self-Supervised Entity Linking [58.838404666183656]
Knowledge-RIch Self-Supervision ($tt KRISSBERT$) is a universal entity linker for four million UMLS entities.
Our approach subsumes zero-shot and few-shot methods, and can easily incorporate entity descriptions and gold mention labels if available.
Without using any labeled information, our method produces $tt KRISSBERT$, a universal entity linker for four million UMLS entities.
arXiv Detail & Related papers (2021-12-15T05:05:12Z) - Neural Production Systems [90.75211413357577]
Visual environments are structured, consisting of distinct objects or entities.
To partition images into entities, deep-learning researchers have proposed structural inductive biases.
We take inspiration from cognitive science and resurrect a classic approach, which consists of a set of rule templates.
This architecture achieves a flexible, dynamic flow of control and serves to factorize entity-specific and rule-based information.
arXiv Detail & Related papers (2021-03-02T18:53:20Z) - Cross-Supervised Joint-Event-Extraction with Heterogeneous Information
Networks [61.950353376870154]
Joint-event-extraction is a sequence-to-sequence labeling task with a tag set composed of tags of triggers and entities.
We propose a Cross-Supervised Mechanism (CSM) to alternately supervise the extraction of triggers or entities.
Our approach outperforms the state-of-the-art methods in both entity and trigger extraction.
arXiv Detail & Related papers (2020-10-13T11:51:17Z) - LUKE: Deep Contextualized Entity Representations with Entity-aware
Self-attention [37.111204321059084]
We propose new pretrained contextualized representations of words and entities based on the bidirectional transformer.
Our model is trained using a new pretraining task based on the masked language model of BERT.
We also propose an entity-aware self-attention mechanism that is an extension of the self-attention mechanism of the transformer.
arXiv Detail & Related papers (2020-10-02T15:38:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.