Anomaly Detection in Video Sequences: A Benchmark and Computational
Model
- URL: http://arxiv.org/abs/2106.08570v1
- Date: Wed, 16 Jun 2021 06:34:38 GMT
- Title: Anomaly Detection in Video Sequences: A Benchmark and Computational
Model
- Authors: Boyang Wan and Wenhui Jiang and Yuming Fang and Zhiyuan Luo and
Guanqun Ding
- Abstract summary: We contribute a new Large-scale Anomaly Detection (LAD) database as the benchmark for anomaly detection in video sequences.
It contains 2000 video sequences including normal and abnormal video clips with 14 anomaly categories including crash, fire, violence, etc.
It provides the annotation data, including video-level labels (abnormal/normal video, anomaly type) and frame-level labels (abnormal/normal video frame) to facilitate anomaly detection.
We propose a multi-task deep neural network to solve anomaly detection as a fully-supervised learning problem.
- Score: 25.25968958782081
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection has attracted considerable search attention. However,
existing anomaly detection databases encounter two major problems. Firstly,
they are limited in scale. Secondly, training sets contain only video-level
labels indicating the existence of an abnormal event during the full video
while lacking annotations of precise time durations. To tackle these problems,
we contribute a new Large-scale Anomaly Detection (LAD) database as the
benchmark for anomaly detection in video sequences, which is featured in two
aspects. 1) It contains 2000 video sequences including normal and abnormal
video clips with 14 anomaly categories including crash, fire, violence, etc.
with large scene varieties, making it the largest anomaly analysis database to
date. 2) It provides the annotation data, including video-level labels
(abnormal/normal video, anomaly type) and frame-level labels (abnormal/normal
video frame) to facilitate anomaly detection. Leveraging the above benefits
from the LAD database, we further formulate anomaly detection as a
fully-supervised learning problem and propose a multi-task deep neural network
to solve it. We first obtain the local spatiotemporal contextual feature by
using an Inflated 3D convolutional (I3D) network. Then we construct a recurrent
convolutional neural network fed the local spatiotemporal contextual feature to
extract the spatiotemporal contextual feature. With the global spatiotemporal
contextual feature, the anomaly type and score can be computed simultaneously
by a multi-task neural network. Experimental results show that the proposed
method outperforms the state-of-the-art anomaly detection methods on our
database and other public databases of anomaly detection. Codes are available
at https://github.com/wanboyang/anomaly_detection_LAD2000.
Related papers
- Weakly Supervised Video Anomaly Detection and Localization with Spatio-Temporal Prompts [57.01985221057047]
This paper introduces a novel method that learnstemporal prompt embeddings for weakly supervised video anomaly detection and localization (WSVADL) based on pre-trained vision-language models (VLMs)
Our method achieves state-of-theart performance on three public benchmarks for the WSVADL task.
arXiv Detail & Related papers (2024-08-12T03:31:29Z) - Dynamic Erasing Network Based on Multi-Scale Temporal Features for
Weakly Supervised Video Anomaly Detection [103.92970668001277]
We propose a Dynamic Erasing Network (DE-Net) for weakly supervised video anomaly detection.
We first propose a multi-scale temporal modeling module, capable of extracting features from segments of varying lengths.
Then, we design a dynamic erasing strategy, which dynamically assesses the completeness of the detected anomalies.
arXiv Detail & Related papers (2023-12-04T09:40:11Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - Towards Video Anomaly Retrieval from Video Anomaly Detection: New
Benchmarks and Model [70.97446870672069]
Video anomaly detection (VAD) has been paid increasing attention due to its potential applications.
Video Anomaly Retrieval ( VAR) aims to pragmatically retrieve relevant anomalous videos by cross-modalities.
We present two benchmarks, UCFCrime-AR and XD-Violence, constructed on top of prevalent anomaly datasets.
arXiv Detail & Related papers (2023-07-24T06:22:37Z) - CHAD: Charlotte Anomaly Dataset [2.6774008509840996]
We present the Charlotte Anomaly dataset (CHAD) for video anomaly detection.
CHAD is the first anomaly dataset to include bounding box, identity, and pose annotations for each actor.
With four camera views and over 1.15 million frames, CHAD is the largest fully annotated anomaly detection dataset.
arXiv Detail & Related papers (2022-12-19T06:05:34Z) - Anomaly detection in surveillance videos using transformer based
attention model [3.2968779106235586]
This research suggests using a weakly supervised strategy to avoid annotating anomalous segments in training videos.
The proposed framework is validated on real-world dataset i.e. ShanghaiTech Campus dataset.
arXiv Detail & Related papers (2022-06-03T12:19:39Z) - UBnormal: New Benchmark for Supervised Open-Set Video Anomaly Detection [103.06327681038304]
We propose a supervised open-set benchmark composed of multiple virtual scenes for video anomaly detection.
Unlike existing data sets, we introduce abnormal events annotated at the pixel level at training time.
We show that UBnormal can enhance the performance of a state-of-the-art anomaly detection framework.
arXiv Detail & Related papers (2021-11-16T17:28:46Z) - Weakly Supervised Video Anomaly Detection via Center-guided
Discriminative Learning [25.787860059872106]
Anomaly detection in surveillance videos is a challenging task due to the diversity of anomalous video content and duration.
We propose an anomaly detection framework, called Anomaly Regression Net (AR-Net), which only requires video-level labels in training stage.
Our method yields a new state-of-the-art result for video anomaly detection on ShanghaiTech dataset.
arXiv Detail & Related papers (2021-04-15T06:41:23Z) - Unsupervised Video Anomaly Detection via Normalizing Flows with Implicit
Latent Features [8.407188666535506]
Most existing methods use an autoencoder to learn to reconstruct normal videos.
We propose an implicit two-path AE (ITAE), a structure in which two encoders implicitly model appearance and motion features.
For the complex distribution of normal scenes, we suggest normal density estimation of ITAE features.
NF models intensify ITAE performance by learning normality through implicitly learned features.
arXiv Detail & Related papers (2020-10-15T05:02:02Z) - A Self-Reasoning Framework for Anomaly Detection Using Video-Level
Labels [17.615297975503648]
Alous event detection in surveillance videos is a challenging and practical research problem among image and video processing community.
We propose a weakly supervised anomaly detection framework based on deep neural networks which is trained in a self-reasoning fashion using only video-level labels.
The proposed framework has been evaluated on publicly available real-world anomaly detection datasets including UCF-crime, ShanghaiTech and Ped2.
arXiv Detail & Related papers (2020-08-27T02:14:15Z) - Self-trained Deep Ordinal Regression for End-to-End Video Anomaly
Detection [114.9714355807607]
We show that applying self-trained deep ordinal regression to video anomaly detection overcomes two key limitations of existing methods.
We devise an end-to-end trainable video anomaly detection approach that enables joint representation learning and anomaly scoring without manually labeled normal/abnormal data.
arXiv Detail & Related papers (2020-03-15T08:44:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.