Variational quantum algorithm based on the minimum potential energy for
solving the Poisson equation
- URL: http://arxiv.org/abs/2106.09333v2
- Date: Mon, 25 Apr 2022 08:02:44 GMT
- Title: Variational quantum algorithm based on the minimum potential energy for
solving the Poisson equation
- Authors: Yuki Sato, Ruho Kondo, Satoshi Koide, Hideki Takamatsu, Nobuyuki Imoto
- Abstract summary: We present a variational quantum algorithm for solving the Poisson equation.
The proposed method defines the total potential energy of the Poisson equation as a Hamiltonian.
Because the number of terms is independent of the size of the problem, this method requires relatively few quantum measurements.
- Score: 7.620967781722716
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computer-aided engineering techniques are indispensable in modern engineering
developments. In particular, partial differential equations are commonly used
to simulate the dynamics of physical phenomena, but very large systems are
often intractable within a reasonable computation time, even when using
supercomputers. To overcome the inherent limit of classical computing, we
present a variational quantum algorithm for solving the Poisson equation that
can be implemented in noisy intermediate-scale quantum devices. The proposed
method defines the total potential energy of the Poisson equation as a
Hamiltonian, which is decomposed into a linear combination of Pauli operators
and simple observables. The expectation value of the Hamiltonian is then
minimized with respect to a parameterized quantum state. Because the number of
decomposed terms is independent of the size of the problem, this method
requires relatively few quantum measurements. Numerical experiments demonstrate
the faster computing speed of this method compared with classical computing
methods and a previous variational quantum approach. We believe that our
approach brings quantum computer-aided techniques closer to future applications
in engineering developments. Code is available at
https://github.com/ToyotaCRDL/VQAPoisson.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Towards Quantum Computational Mechanics [1.530480694206666]
We show how quantum computing can be used to solve representative element volume (RVE) problems in computational homogenisation.
Our quantum RVE solver attains exponential acceleration with respect to classical solvers.
arXiv Detail & Related papers (2023-12-06T12:53:02Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Variational Quantum Solutions to the Advection-Diffusion Equation for
Applications in Fluid Dynamics [0.0]
We present one method to perform fluid dynamics calculations that takes advantage of quantum computing.
We find that reliable solutions of the equation can be obtained on even the noisy quantum computers available today.
arXiv Detail & Related papers (2022-08-24T21:29:46Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Density functionals and Kohn-Sham potentials with minimal wavefunction
preparations on a quantum computer [0.0]
One of the potential applications of a quantum computer is solving quantum chemical systems.
We demonstrate a method for obtaining the exact functional as a machine learned model from a sufficiently powerful quantum computer.
arXiv Detail & Related papers (2020-08-12T22:50:39Z) - Quantum Solver of Contracted Eigenvalue Equations for Scalable Molecular
Simulations on Quantum Computing Devices [0.0]
We introduce a quantum solver of contracted eigenvalue equations, the quantum analogue of classical methods for the energies.
We demonstrate the algorithm though computations on both a quantum simulator and two IBM quantum processing units.
arXiv Detail & Related papers (2020-04-23T18:35:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.