Biomedical Interpretable Entity Representations
- URL: http://arxiv.org/abs/2106.09502v1
- Date: Thu, 17 Jun 2021 13:52:10 GMT
- Title: Biomedical Interpretable Entity Representations
- Authors: Diego Garcia-Olano, Yasumasa Onoe, Ioana Baldini, Joydeep Ghosh, Byron
C. Wallace, Kush R. Varshney
- Abstract summary: Pre-trained language models induce dense entity representations that offer strong performance on entity-centric NLP tasks.
This can be a barrier to model uptake in important domains such as biomedicine.
We create a new entity type system and training set from a large corpus of biomedical texts.
- Score: 40.6095537182194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-trained language models induce dense entity representations that offer
strong performance on entity-centric NLP tasks, but such representations are
not immediately interpretable. This can be a barrier to model uptake in
important domains such as biomedicine. There has been recent work on general
interpretable representation learning (Onoe and Durrett, 2020), but these
domain-agnostic representations do not readily transfer to the important domain
of biomedicine. In this paper, we create a new entity type system and training
set from a large corpus of biomedical texts by mapping entities to concepts in
a medical ontology, and from these to Wikipedia pages whose categories are our
types. From this mapping we derive Biomedical Interpretable Entity
Representations(BIERs), in which dimensions correspond to fine-grained entity
types, and values are predicted probabilities that a given entity is of the
corresponding type. We propose a novel method that exploits BIER's final sparse
and intermediate dense representations to facilitate model and entity type
debugging. We show that BIERs achieve strong performance in biomedical tasks
including named entity disambiguation and entity label classification, and we
provide error analysis to highlight the utility of their interpretability,
particularly in low-supervision settings. Finally, we provide our induced 68K
biomedical type system, the corresponding 37 million triples of derived data
used to train BIER models and our best performing model.
Related papers
- Multi-level biomedical NER through multi-granularity embeddings and
enhanced labeling [3.8599767910528917]
This paper proposes a hybrid approach that integrates the strengths of multiple models.
BERT provides contextualized word embeddings, a pre-trained multi-channel CNN for character-level information capture, and following by a BiLSTM + CRF for sequence labelling and modelling dependencies between the words in the text.
We evaluate our model on the benchmark i2b2/2010 dataset, achieving an F1-score of 90.11.
arXiv Detail & Related papers (2023-12-24T21:45:36Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - Biomedical Language Models are Robust to Sub-optimal Tokenization [30.175714262031253]
Most modern biomedical language models (LMs) are pre-trained using standard domain-specific tokenizers.
We find that pre-training a biomedical LM using a more accurate biomedical tokenizer does not improve the entity representation quality of a language model.
arXiv Detail & Related papers (2023-06-30T13:35:24Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
Generalist AI holds the potential to address limitations due to its versatility in interpreting different data types.
Here, we propose BiomedGPT, the first open-source and lightweight vision-language foundation model.
arXiv Detail & Related papers (2023-05-26T17:14:43Z) - AIONER: All-in-one scheme-based biomedical named entity recognition
using deep learning [7.427654811697884]
We present AIONER, a general-purpose BioNER tool based on cutting-edge deep learning and our AIO schema.
AIONER is effective, robust, and compares favorably to other state-of-the-art approaches such as multi-task learning.
arXiv Detail & Related papers (2022-11-30T12:35:00Z) - Recognising Biomedical Names: Challenges and Solutions [9.51284672475743]
We propose a transition-based NER model which can recognise discontinuous mentions.
We also develop a cost-effective approach that nominates the suitable pre-training data.
Our contributions have obvious practical implications, especially when new biomedical applications are needed.
arXiv Detail & Related papers (2021-06-23T08:20:13Z) - Scientific Language Models for Biomedical Knowledge Base Completion: An
Empirical Study [62.376800537374024]
We study scientific LMs for KG completion, exploring whether we can tap into their latent knowledge to enhance biomedical link prediction.
We integrate the LM-based models with KG embedding models, using a router method that learns to assign each input example to either type of model and provides a substantial boost in performance.
arXiv Detail & Related papers (2021-06-17T17:55:33Z) - BioALBERT: A Simple and Effective Pre-trained Language Model for
Biomedical Named Entity Recognition [9.05154470433578]
Existing BioNER approaches often neglect these issues and directly adopt the state-of-the-art (SOTA) models.
We propose biomedical ALBERT, an effective domain-specific language model trained on large-scale biomedical corpora.
arXiv Detail & Related papers (2020-09-19T12:58:47Z) - Domain-Specific Language Model Pretraining for Biomedical Natural
Language Processing [73.37262264915739]
We show that for domains with abundant unlabeled text, such as biomedicine, pretraining language models from scratch results in substantial gains.
Our experiments show that domain-specific pretraining serves as a solid foundation for a wide range of biomedical NLP tasks.
arXiv Detail & Related papers (2020-07-31T00:04:15Z) - Interpretable Entity Representations through Large-Scale Typing [61.4277527871572]
We present an approach to creating entity representations that are human readable and achieve high performance out of the box.
Our representations are vectors whose values correspond to posterior probabilities over fine-grained entity types.
We show that it is possible to reduce the size of our type set in a learning-based way for particular domains.
arXiv Detail & Related papers (2020-04-30T23:58:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.