Gradual Domain Adaptation via Self-Training of Auxiliary Models
- URL: http://arxiv.org/abs/2106.09890v1
- Date: Fri, 18 Jun 2021 03:15:25 GMT
- Title: Gradual Domain Adaptation via Self-Training of Auxiliary Models
- Authors: Yabin Zhang, Bin Deng, Kui Jia, Lei Zhang
- Abstract summary: Domain adaptation becomes more challenging with increasing gaps between source and target domains.
We propose self-training of auxiliary models (AuxSelfTrain) that learns models for intermediate domains.
Experiments on benchmark datasets of unsupervised and semi-supervised domain adaptation verify its efficacy.
- Score: 50.63206102072175
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Domain adaptation becomes more challenging with increasing gaps between
source and target domains. Motivated from an empirical analysis on the
reliability of labeled source data for the use of distancing target domains, we
propose self-training of auxiliary models (AuxSelfTrain) that learns models for
intermediate domains and gradually combats the distancing shifts across
domains. We introduce evolving intermediate domains as combinations of
decreasing proportion of source data and increasing proportion of target data,
which are sampled to minimize the domain distance between consecutive domains.
Then the source model could be gradually adapted for the use in the target
domain by self-training of auxiliary models on evolving intermediate domains.
We also introduce an enhanced indicator for sample selection via implicit
ensemble and extend the proposed method to semi-supervised domain adaptation.
Experiments on benchmark datasets of unsupervised and semi-supervised domain
adaptation verify its efficacy.
Related papers
- Stratified Domain Adaptation: A Progressive Self-Training Approach for Scene Text Recognition [1.2878987353423252]
Unsupervised domain adaptation (UDA) has become increasingly prevalent in scene text recognition (STR)
We introduce the Stratified Domain Adaptation (StrDA) approach, which examines the gradual escalation of the domain gap for the learning process.
We propose a novel method for employing domain discriminators to estimate the out-of-distribution and domain discriminative levels of data samples.
arXiv Detail & Related papers (2024-10-13T16:40:48Z) - SIDE: Self-supervised Intermediate Domain Exploration for Source-free
Domain Adaptation [36.470026809824674]
Domain adaptation aims to alleviate the domain shift when transferring the knowledge learned from the source domain to the target domain.
Due to privacy issues, source-free domain adaptation (SFDA) has recently become very demanding yet challenging.
This paper proposes self-supervised intermediate domain exploration (SIDE) that effectively bridges the domain gap with an intermediate domain.
arXiv Detail & Related papers (2023-10-13T07:50:37Z) - Open-Set Domain Adaptation with Visual-Language Foundation Models [51.49854335102149]
Unsupervised domain adaptation (UDA) has proven to be very effective in transferring knowledge from a source domain to a target domain with unlabeled data.
Open-set domain adaptation (ODA) has emerged as a potential solution to identify these classes during the training phase.
arXiv Detail & Related papers (2023-07-30T11:38:46Z) - Meta-causal Learning for Single Domain Generalization [102.53303707563612]
Single domain generalization aims to learn a model from a single training domain (source domain) and apply it to multiple unseen test domains (target domains)
Existing methods focus on expanding the distribution of the training domain to cover the target domains, but without estimating the domain shift between the source and target domains.
We propose a new learning paradigm, namely simulate-analyze-reduce, which first simulates the domain shift by building an auxiliary domain as the target domain, then learns to analyze the causes of domain shift, and finally learns to reduce the domain shift for model adaptation.
arXiv Detail & Related papers (2023-04-07T15:46:38Z) - Attention-based Cross-Layer Domain Alignment for Unsupervised Domain
Adaptation [14.65316832227658]
Unsupervised domain adaptation (UDA) aims to learn transferable knowledge from a labeled source domain and adapts a trained model to an unlabeled target domain.
One prevailing strategy is to minimize the distribution discrepancy by aligning their semantic features extracted by deep models.
arXiv Detail & Related papers (2022-02-27T08:36:12Z) - FixBi: Bridging Domain Spaces for Unsupervised Domain Adaptation [26.929772844572213]
We introduce a fixed ratio-based mixup to augment multiple intermediate domains between the source and target domain.
We train the source-dominant model and the target-dominant model that have complementary characteristics.
Through our proposed methods, the models gradually transfer domain knowledge from the source to the target domain.
arXiv Detail & Related papers (2020-11-18T11:58:19Z) - Unsupervised BatchNorm Adaptation (UBNA): A Domain Adaptation Method for
Semantic Segmentation Without Using Source Domain Representations [35.586031601299034]
Unsupervised BatchNorm Adaptation (UBNA) adapts a given pre-trained model to an unseen target domain.
We partially adapt the normalization layer statistics to the target domain using an exponentially decaying momentum factor.
Compared to standard UDA approaches we report a trade-off between performance and usage of source domain representations.
arXiv Detail & Related papers (2020-11-17T08:37:40Z) - Towards Fair Cross-Domain Adaptation via Generative Learning [50.76694500782927]
Domain Adaptation (DA) targets at adapting a model trained over the well-labeled source domain to the unlabeled target domain lying in different distributions.
We develop a novel Generative Few-shot Cross-domain Adaptation (GFCA) algorithm for fair cross-domain classification.
arXiv Detail & Related papers (2020-03-04T23:25:09Z) - Bi-Directional Generation for Unsupervised Domain Adaptation [61.73001005378002]
Unsupervised domain adaptation facilitates the unlabeled target domain relying on well-established source domain information.
Conventional methods forcefully reducing the domain discrepancy in the latent space will result in the destruction of intrinsic data structure.
We propose a Bi-Directional Generation domain adaptation model with consistent classifiers interpolating two intermediate domains to bridge source and target domains.
arXiv Detail & Related papers (2020-02-12T09:45:39Z) - Multi-Source Domain Adaptation for Text Classification via
DistanceNet-Bandits [101.68525259222164]
We present a study of various distance-based measures in the context of NLP tasks, that characterize the dissimilarity between domains based on sample estimates.
We develop a DistanceNet model which uses these distance measures as an additional loss function to be minimized jointly with the task's loss function.
We extend this model to a novel DistanceNet-Bandit model, which employs a multi-armed bandit controller to dynamically switch between multiple source domains.
arXiv Detail & Related papers (2020-01-13T15:53:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.