Supervised learning for crop/weed classification based on color and
texture features
- URL: http://arxiv.org/abs/2106.10581v1
- Date: Sat, 19 Jun 2021 22:31:54 GMT
- Title: Supervised learning for crop/weed classification based on color and
texture features
- Authors: Faiza Mekhalfa and Fouad Yacef
- Abstract summary: This paper investigates the use of color and texture features for discrimination of Soybean crops and weeds.
Experiment was carried out on image dataset of soybean crop, obtained from an unmanned aerial vehicle (UAV)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Computer vision techniques have attracted a great interest in precision
agriculture, recently. The common goal of all computer vision-based precision
agriculture tasks is to detect the objects of interest (e.g., crop, weed) and
discriminating them from the background. The Weeds are unwanted plants growing
among crops competing for nutrients, water, and sunlight, causing losses to
crop yields. Weed detection and mapping is critical for site-specific weed
management to reduce the cost of labor and impact of herbicides. This paper
investigates the use of color and texture features for discrimination of
Soybean crops and weeds. Feature extraction methods including two color spaces
(RGB, HSV), gray level Co-occurrence matrix (GLCM), and Local Binary Pattern
(LBP) are used to train the Support Vector Machine (SVM) classifier. The
experiment was carried out on image dataset of soybean crop, obtained from an
unmanned aerial vehicle (UAV), which is publicly available. The results from
the experiment showed that the highest accuracy (above 96%) was obtained from
the combination of color and LBP features.
Related papers
- Multispectral Fine-Grained Classification of Blackgrass in Wheat and Barley Crops [2.580056799681784]
Blackgrass is a major grass weed which causes particular problems in cereal crops in north-west Europe.
With the use of machine vision and multispectral imaging, we investigate the effectiveness of state-of-the-art methods to identify blackgrass.
arXiv Detail & Related papers (2024-05-03T16:23:41Z) - Precision Agriculture: Crop Mapping using Machine Learning and Sentinel-2 Satellite Imagery [5.914742040076052]
This study employs deep learning and pixel-based machine learning methods to accurately segment lavender fields for precision agriculture.
Our fine-tuned final model, a U-Net architecture, can achieve a Dice coefficient of 0.8324.
arXiv Detail & Related papers (2023-11-25T20:26:11Z) - Crop Disease Classification using Support Vector Machines with Green
Chromatic Coordinate (GCC) and Attention based feature extraction for IoT
based Smart Agricultural Applications [0.0]
Plant diseases can negatively affect leaves during agricultural cultivation, resulting in significant losses in crop output and economic value.
Various machine learning (ML) as well as deep learning (DL) algorithms have been created & studied for the identification of plant disease detection.
This article presents a novel classification method that builds on prior work by utilising attention-based feature extraction, RGB channel-based chromatic analysis, Support Vector Machines (SVM) for improved performance.
arXiv Detail & Related papers (2023-11-01T10:44:49Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
In this study, we use Deep Learning methods to semantically segment grapevine leaves images in order to develop an automated object detection system for leaf phenotyping.
Our work contributes to plant lifecycle monitoring through which dynamic traits such as growth and development can be captured and quantified.
arXiv Detail & Related papers (2022-10-24T14:37:09Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
The paper presents an approach for analyzing aerial images of a potato crop using deep neural networks.
The main objective is to demonstrate automated spatial recognition of a healthy versus stressed crop at a plant level.
Experimental validation demonstrated the ability for distinguishing healthy and stressed plants in field images, achieving an average Dice coefficient of 0.74.
arXiv Detail & Related papers (2021-06-14T21:57:40Z) - Using depth information and colour space variations for improving
outdoor robustness for instance segmentation of cabbage [62.997667081978825]
This research focuses on improving instance segmentation of field crops under varying environmental conditions.
The influence of depth information and different colour space representations were analysed.
Results showed that depth combined with colour information leads to a segmentation accuracy increase of 7.1%.
arXiv Detail & Related papers (2021-03-31T09:19:12Z) - A Survey of Deep Learning Techniques for Weed Detection from Images [4.96981595868944]
We review existing deep learning-based weed detection and classification techniques.
We find that most studies applied supervised learning techniques, they achieved high classification accuracy.
Past experiments have already achieved high accuracy when a large amount of labelled data is available.
arXiv Detail & Related papers (2021-03-02T02:02:24Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
We take advantage of all parallel developments in mechanistic modeling and satellite data availability for advanced monitoring of crop productivity.
Our model successfully estimates gross primary productivity across a variety of C3 crop types and environmental conditions even though it does not use any local information from the corresponding sites.
This highlights its potential to map crop productivity from new satellite sensors at a global scale with the help of current Earth observation cloud computing platforms.
arXiv Detail & Related papers (2020-12-07T16:23:13Z) - Weed Density and Distribution Estimation for Precision Agriculture using
Semi-Supervised Learning [0.0]
We propose a deep learning-based semi-supervised approach for robust estimation of weed density and distribution.
In this work, the foreground vegetation pixels containing crops and weeds are first identified using a Convolutional Neural Network (CNN) based unsupervised segmentation.
The weed infected regions are identified using a fine-tuned CNN, eliminating the need for designing hand-crafted features.
arXiv Detail & Related papers (2020-11-04T09:35:53Z) - Pollen13K: A Large Scale Microscope Pollen Grain Image Dataset [63.05335933454068]
This work presents the first large-scale pollen grain image dataset, including more than 13 thousands objects.
The paper focuses on the employed data acquisition steps, which include aerobiological sampling, microscope image acquisition, object detection, segmentation and labelling.
arXiv Detail & Related papers (2020-07-09T10:33:31Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
We present Agriculture-Vision: a large-scale aerial farmland image dataset for semantic segmentation of agricultural patterns.
Each image consists of RGB and Near-infrared (NIR) channels with resolution as high as 10 cm per pixel.
We annotate nine types of field anomaly patterns that are most important to farmers.
arXiv Detail & Related papers (2020-01-05T20:19:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.