TGRNet: A Table Graph Reconstruction Network for Table Structure
Recognition
- URL: http://arxiv.org/abs/2106.10598v1
- Date: Sun, 20 Jun 2021 01:57:05 GMT
- Title: TGRNet: A Table Graph Reconstruction Network for Table Structure
Recognition
- Authors: Wenyuan Xue and Baosheng Yu and Wen Wang and Dacheng Tao and Qingyong
Li
- Abstract summary: We propose an end-to-end trainable table graph reconstruction network (TGRNet) for table structure recognition.
Specifically, the proposed method has two main branches, a cell detection branch and a cell logical location branch, to jointly predict the spatial location and the logical location of different cells.
- Score: 76.06530816349763
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A table arranging data in rows and columns is a very effective data
structure, which has been widely used in business and scientific research.
Considering large-scale tabular data in online and offline documents, automatic
table recognition has attracted increasing attention from the document analysis
community. Though human can easily understand the structure of tables, it
remains a challenge for machines to understand that, especially due to a
variety of different table layouts and styles. Existing methods usually model a
table as either the markup sequence or the adjacency matrix between different
table cells, failing to address the importance of the logical location of table
cells, e.g., a cell is located in the first row and the second column of the
table. In this paper, we reformulate the problem of table structure recognition
as the table graph reconstruction, and propose an end-to-end trainable table
graph reconstruction network (TGRNet) for table structure recognition.
Specifically, the proposed method has two main branches, a cell detection
branch and a cell logical location branch, to jointly predict the spatial
location and the logical location of different cells. Experimental results on
three popular table recognition datasets and a new dataset with table graph
annotations (TableGraph-350K) demonstrate the effectiveness of the proposed
TGRNet for table structure recognition. Code and annotations will be made
publicly available.
Related papers
- TRACE: Table Reconstruction Aligned to Corner and Edges [7.536220920052911]
We analyze the natural characteristics of a table, where a table is composed of cells and each cell is made up of borders consisting of edges.
We propose a novel method to reconstruct the table in a bottom-up manner.
A simple design makes the model easier to train and requires less computation than previous two-stage methods.
arXiv Detail & Related papers (2023-05-01T02:26:15Z) - SEMv2: Table Separation Line Detection Based on Instance Segmentation [96.36188168694781]
We propose an accurate table structure recognizer, termed SEMv2 (SEM: Split, Embed and Merge)
We address the table separation line instance-level discrimination problem and introduce a table separation line detection strategy based on conditional convolution.
To comprehensively evaluate the SEMv2, we also present a more challenging dataset for table structure recognition, dubbed iFLYTAB.
arXiv Detail & Related papers (2023-03-08T05:15:01Z) - Table Retrieval May Not Necessitate Table-specific Model Design [83.27735758203089]
We focus on the task of table retrieval, and ask: "is table-specific model design necessary for table retrieval?"
Based on an analysis on a table-based portion of the Natural Questions dataset (NQ-table), we find that structure plays a negligible role in more than 70% of the cases.
We then experiment with three modules to explicitly encode table structures, namely auxiliary row/column embeddings, hard attention masks, and soft relation-based attention biases.
None of these yielded significant improvements, suggesting that table-specific model design may not be necessary for table retrieval.
arXiv Detail & Related papers (2022-05-19T20:35:23Z) - Split, embed and merge: An accurate table structure recognizer [42.579215135672094]
We introduce Split, Embed and Merge (SEM) as an accurate table structure recognizer.
SEM can achieve an average F-Measure of $96.9%$ on the SciTSR dataset.
arXiv Detail & Related papers (2021-07-12T06:26:19Z) - Multi-Type-TD-TSR -- Extracting Tables from Document Images using a
Multi-stage Pipeline for Table Detection and Table Structure Recognition:
from OCR to Structured Table Representations [63.98463053292982]
The recognition of tables consists of two main tasks, namely table detection and table structure recognition.
Recent work shows a clear trend towards deep learning approaches coupled with the use of transfer learning for the task of table structure recognition.
We present a multistage pipeline named Multi-Type-TD-TSR, which offers an end-to-end solution for the problem of table recognition.
arXiv Detail & Related papers (2021-05-23T21:17:18Z) - TCN: Table Convolutional Network for Web Table Interpretation [52.32515851633981]
We propose a novel table representation learning approach considering both the intra- and inter-table contextual information.
Our method can outperform competitive baselines by +4.8% of F1 for column type prediction and by +4.1% of F1 for column pairwise relation prediction.
arXiv Detail & Related papers (2021-02-17T02:18:10Z) - TUTA: Tree-based Transformers for Generally Structured Table
Pre-training [47.181660558590515]
Recent attempts on table understanding mainly focus on relational tables, yet overlook to other common table structures.
We propose TUTA, a unified pre-training architecture for understanding generally structured tables.
TUTA is highly effective, achieving state-of-the-art on five widely-studied datasets.
arXiv Detail & Related papers (2020-10-21T13:22:31Z) - Global Table Extractor (GTE): A Framework for Joint Table Identification
and Cell Structure Recognition Using Visual Context [11.99452212008243]
We present a vision-guided systematic framework for joint table detection and cell structured recognition.
With GTE-Table, we invent a new penalty based on the natural cell containment constraint of tables to train our table network.
We use this to enhance PubTabNet with cell labels and create FinTabNet, real-world and complex scientific and financial datasets.
arXiv Detail & Related papers (2020-05-01T20:14:49Z) - Identifying Table Structure in Documents using Conditional Generative
Adversarial Networks [0.0]
In many industries and in academic research, information is primarily transmitted in the form of unstructured documents.
We propose a top-down approach, first using a conditional generative adversarial network to map a table image into a standardised skeleton' table form.
We then deriving latent table structure using xy-cut projection and Genetic Algorithm optimisation.
arXiv Detail & Related papers (2020-01-13T20:42:40Z) - Table Structure Extraction with Bi-directional Gated Recurrent Unit
Networks [5.350788087718877]
This paper proposes a robust deep learning based approach to extract rows and columns from a detected table in document images with a high precision.
We have benchmarked our system on publicly available UNLV as well as ICDAR 2013 datasets on which it outperformed the state-of-the-art table structure extraction systems by a significant margin.
arXiv Detail & Related papers (2020-01-08T13:17:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.