Neighborhood Contrastive Learning for Novel Class Discovery
- URL: http://arxiv.org/abs/2106.10731v1
- Date: Sun, 20 Jun 2021 17:34:55 GMT
- Title: Neighborhood Contrastive Learning for Novel Class Discovery
- Authors: Zhun Zhong, Enrico Fini, Subhankar Roy, Zhiming Luo, Elisa Ricci, Nicu
Sebe
- Abstract summary: We build a new framework, named Neighborhood Contrastive Learning, to learn discriminative representations that are important to clustering performance.
We experimentally demonstrate that these two ingredients significantly contribute to clustering performance and lead our model to outperform state-of-the-art methods by a large margin.
- Score: 79.14767688903028
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we address Novel Class Discovery (NCD), the task of unveiling
new classes in a set of unlabeled samples given a labeled dataset with known
classes. We exploit the peculiarities of NCD to build a new framework, named
Neighborhood Contrastive Learning (NCL), to learn discriminative
representations that are important to clustering performance. Our contribution
is twofold. First, we find that a feature extractor trained on the labeled set
generates representations in which a generic query sample and its neighbors are
likely to share the same class. We exploit this observation to retrieve and
aggregate pseudo-positive pairs with contrastive learning, thus encouraging the
model to learn more discriminative representations. Second, we notice that most
of the instances are easily discriminated by the network, contributing less to
the contrastive loss. To overcome this issue, we propose to generate hard
negatives by mixing labeled and unlabeled samples in the feature space. We
experimentally demonstrate that these two ingredients significantly contribute
to clustering performance and lead our model to outperform state-of-the-art
methods by a large margin (e.g., clustering accuracy +13% on CIFAR-100 and +8%
on ImageNet).
Related papers
- Generalized Category Discovery with Clustering Assignment Consistency [56.92546133591019]
Generalized category discovery (GCD) is a recently proposed open-world task.
We propose a co-training-based framework that encourages clustering consistency.
Our method achieves state-of-the-art performance on three generic benchmarks and three fine-grained visual recognition datasets.
arXiv Detail & Related papers (2023-10-30T00:32:47Z) - CLC: Cluster Assignment via Contrastive Representation Learning [9.631532215759256]
We propose Contrastive Learning-based Clustering (CLC), which uses contrastive learning to directly learn cluster assignment.
We achieve 53.4% accuracy on the full ImageNet dataset and outperform existing methods by large margins.
arXiv Detail & Related papers (2023-06-08T07:15:13Z) - PromptCAL: Contrastive Affinity Learning via Auxiliary Prompts for
Generalized Novel Category Discovery [39.03732147384566]
Generalized Novel Category Discovery (GNCD) setting aims to categorize unlabeled training data coming from known and novel classes.
We propose Contrastive Affinity Learning method with auxiliary visual Prompts, dubbed PromptCAL, to address this challenging problem.
Our approach discovers reliable pairwise sample affinities to learn better semantic clustering of both known and novel classes for the class token and visual prompts.
arXiv Detail & Related papers (2022-12-11T20:06:14Z) - C3: Cross-instance guided Contrastive Clustering [8.953252452851862]
Clustering is the task of gathering similar data samples into clusters without using any predefined labels.
We propose a novel contrastive clustering method, Cross-instance guided Contrastive Clustering (C3)
Our proposed method can outperform state-of-the-art algorithms on benchmark computer vision datasets.
arXiv Detail & Related papers (2022-11-14T06:28:07Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
Method for unsupervised meta-learning, CACTUs, is a clustering-based approach with pseudo-labeling.
This approach is model-agnostic and can be combined with supervised algorithms to learn from unlabeled data.
We prove that the core reason for this is lack of a clustering-friendly property in the embedding space.
arXiv Detail & Related papers (2022-09-27T19:04:36Z) - Weakly Supervised Contrastive Learning [68.47096022526927]
We introduce a weakly supervised contrastive learning framework (WCL) to tackle this issue.
WCL achieves 65% and 72% ImageNet Top-1 Accuracy using ResNet50, which is even higher than SimCLRv2 with ResNet101.
arXiv Detail & Related papers (2021-10-10T12:03:52Z) - Solving Inefficiency of Self-supervised Representation Learning [87.30876679780532]
Existing contrastive learning methods suffer from very low learning efficiency.
Under-clustering and over-clustering problems are major obstacles to learning efficiency.
We propose a novel self-supervised learning framework using a median triplet loss.
arXiv Detail & Related papers (2021-04-18T07:47:10Z) - Doubly Contrastive Deep Clustering [135.7001508427597]
We present a novel Doubly Contrastive Deep Clustering (DCDC) framework, which constructs contrastive loss over both sample and class views.
Specifically, for the sample view, we set the class distribution of the original sample and its augmented version as positive sample pairs.
For the class view, we build the positive and negative pairs from the sample distribution of the class.
In this way, two contrastive losses successfully constrain the clustering results of mini-batch samples in both sample and class level.
arXiv Detail & Related papers (2021-03-09T15:15:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.